本文考虑了非独立多机器人系统的同时位置和方向计划。与仅关注最终位置限制的常见研究不同,我们将非语言移动机器人建模为刚性机构,并引入机器人最终状态的方向和位置约束。换句话说,机器人不仅应达到指定的位置,而且还应同时指出所需的方向。这个问题的挑战在于全州运动计划的不足,因为只需要通过两个控制输入来计划三个州。为此,我们根据刚体建模提出了动态矢量场(DVF)。具体而言,机器人方向的动力学被带入矢量场,这意味着向量场不再是2-D平面上的静态,而是一个动态的,而动态场却随态度角度而变化。因此,每个机器人可以沿DVF的积分曲线移动以达到所需位置,与此同时,姿态角可以在方向动力学之后收敛到指定值。随后,通过在DVF的框架下设计一个圆形向量场,我们进一步研究了运动计划中的避免障碍物和相互企业的避免。最后,提供了数值仿真示例,以验证提出的方法的有效性。
translated by 谷歌翻译
In this work, we propose a collision-free source seeking control framework for unicycle robots traversing an unknown cluttered environment. In this framework, the obstacle avoidance is guided by the control barrier functions (CBF) embedded in quadratic programming and the source seeking control relies solely on the use of on-board sensors that measure signal strength of the source. To tackle the mixed relative degree of the CBF, we proposed three different CBF, namely the zeroing control barrier functions (ZCBF), exponential control barrier functions (ECBF), and reciprocal control barrier functions (RCBF) that can directly be integrated with our recent gradient-ascent source-seeking control law. We provide rigorous analysis of the three different methods and show the efficacy of the approaches in simulations using Matlab, as well as, using a realistic dynamic environment with moving obstacles in Gazebo/ROS.
translated by 谷歌翻译
近年来,移动机器人的安全问题引起了人们的关注。在本文中,我们提出了一种智能的物理攻击,通过从外部观察中学习障碍 - 避免机制,将移动机器人置于预设位置。我们作品的显着新颖性在于揭示具有智能和高级设计的基于物理攻击的可能性,可以带来真正的威胁,而没有对系统动态或对内部系统的访问的先验知识。传统网络空间安全中的对策无法处理这种攻击。练习,拟议的攻击的基石是积极探索受害者机器人与环境的复杂相互作用的特征,并学习对其行为的有限观察中表现出的障碍知识。然后,我们提出了最短的路径和手持攻击算法,以从巨大的运动空间中找到有效的攻击路径,从而在路径长度和活动期间分别以低成本实现了驾驶到陷阱目标。证明了算法的收敛性,并进一步得出了攻击性能范围。广泛的模拟和现实生活实验说明了拟议攻击的有效性,招呼未来对机器人系统的物理威胁和防御的研究。
translated by 谷歌翻译
我们提出协调指导矢量字段,以与机器人团队同时完成两个任务:首先,多个机器人的指导和导航到可能嵌入2D或3D中的可能不同的路径或表面;其次,他们的运动协调在跟踪他们的规定路径或表面时。运动配位是由路径或表面上的机器人之间所需的参数位移定义的。通过控制对应于指导矢量场之间的路径或表面参数的虚拟坐标来实现这种所需的位移。由动力学系统理论和Lyapunov理论支撑的严格数学保证,用于从所有初始位置上有效的分布式运动协调和机器人在路径或表面上导航。作为实用机器人应用的一个例子,我们从所提出的具有驱动饱和度的Dubins-car样模型的指导向量场中得出了一种对照算法。我们提出的算法分布并可扩展到任意数量的机器人。此外,广泛的说明性模拟和固定翼飞机户外实验验证了我们算法的有效性和鲁棒性。
translated by 谷歌翻译
Continuous formulations of trajectory planning problems have two main benefits. First, constraints are guaranteed to be satisfied at all times. Secondly, dynamic obstacles can be naturally considered with time. This paper introduces a novel B-spline based trajectory optimization method for multi-jointed robots that provides a continuous trajectory with guaranteed continuous constraints satisfaction. At the core of this method, B-spline basic operations, like addition, multiplication, and derivative, are rigorously defined and applied for problem formulation. B-spline unique characteristics, such as the convex hull and smooth curves properties, are utilized to reformulate the original continuous optimization problem into a finite-dimensional problem. Collision avoidance with static obstacles is achieved using the signed distance field, while that with dynamic obstacles is accomplished via constructing time-varying separating hyperplanes. Simulation results on various robots validate the effectiveness of the algorithm. In addition, this paper provides experimental validations with a 6-link FANUC robot avoiding static and moving obstacles.
translated by 谷歌翻译
多机器人运输(MRT)是通过多个机器人的合作将对象运送到目的地。在物体运输过程中,避免障碍是一个不可或缺的特征。在传统的当地规划师中,障碍通常被认为是不可克服的,所以机器人团队绕过整个障碍。然而,许多障碍可以在真实情况下越过。研究机器人团队的障碍交叉能力可以提高MRT的效率,并提高复杂环境中的规划成功率。通过患者转移通过床单的灵感,本文侧重于多移动机器人的物体运输,具有可变形的纸张。提出了一种具有障碍交叉能力的新的本地计划者,其中包括三个部分:可变形的纸张建模,形成优化和局部路径。它可以成功找到在其他规划者失败的复杂情景中的障碍交叉路径。策划者的有效性和多功能性通过实验中的三个移动机器人进行了案例研究,以及具有四个机器人的模拟。
translated by 谷歌翻译
我们开发了一种自主导航算法,用于在二维环境中运行的机器人杂乱,其具有任意凸形的障碍物。所提出的导航方法依赖于混合反馈,以保证机器人对预定目标位置的全局渐近稳定,同时确保无障碍工作空间的前向不变性。主要思想在于基于机器人相对于最近障碍的接近设计,在移动到目标模式和障碍物避免模式之间设计适当的切换策略。当机器人初始化远离障碍物的边界时,所提出的混合控制器产生连续速度输入轨迹。最后,我们为所提出的混合控制器的基于传感器的实现提供了一种算法过程,并通过一些仿真结果验证其有效性。
translated by 谷歌翻译
在本文中,我们在混乱的环境中沿多项式轨迹引入了一个通用的连续碰撞检测(CCD)框架,包括各种静态障碍物模型。具体而言,我们发现机器人和障碍物之间的碰撞条件可以转化为一组多项式不平等,其根可以由提议的求解器有效地解决。此外,我们在广泛的CCD框架中测试具有各种运动学和动态约束的不同类型的移动机器人,并验证它允许可证明的碰撞检查并可以计算确切的影响时间。此外,我们将架构与导航系统中的路径计划器相结合。从我们的CCD方法中受益,移动机器人能够在一些具有挑战性的情况下安全地工作。
translated by 谷歌翻译
在本文中,我们为多机器人系统提供了一种分散和无通信的碰撞避免方法,该系统考虑了机器人定位和感测不确定性。该方法依赖于计算每个机器人的不确定感知安全区域,以在高斯分布的不确定性的假设下在环境中导航的其他机器人和环境中的静态障碍物。特别地,在每次步骤中,我们为每个机器人构建一个机器人约束的缓冲不确定性感知的voronoI细胞(B-UAVC)给出指定的碰撞概率阈值。通过将每个机器人的运动约束在其对应的B-UAVC内,即机器人和障碍物之间的碰撞概率仍然可以实现概率碰撞避免。所提出的方法是分散的,无通信,可扩展,具有机器人的数量和机器人本地化和感测不确定性的强大。我们将方法应用于单积分器,双积分器,差动驱动机器人和具有一般非线性动力学的机器人。对地面车辆,四轮车和异质机器人团队进行广泛的模拟和实验,以分析和验证所提出的方法。
translated by 谷歌翻译
我们为非全面移动机器人设计了MPC方法,并在分析上表明,随着时间的变化,线性化的系统可以在跟踪任务中的来源周围产生渐近稳定性。为了避免障碍物,我们提出了速度空间中的约束,该约束根据当前状态明确耦合两个控件输入。
translated by 谷歌翻译
导航功能同时提供路径和运动计划,可用于确保球体世界中的避免障碍和融合。在处理复杂和现实的场景时,建立对球体世界的转变至关重要,同时又具有挑战性。这项工作提出了一种新颖的转换,称为保形导航转换,以实现带有任意形状障碍的工作空间中机器人的无碰撞导航。研究了保形导航转换的特性,包括唯一性,导航属性的不变性和无角变形,这有助于在复杂环境中的机器人导航问题解决方案。基于导航功能和提出的转换,为运动和动态移动机器人的自动指导和运动控制提供了反馈控制器。此外,提出了一种迭代方法,以在多连接的工作区中构造保形导航变换,该连接工作区将多连接的问题转换为多个单一连接的问题以实现快速收敛。除了分析保证外,模拟研究还验证了在具有非平凡障碍的工作区中提出的方法的有效性。
translated by 谷歌翻译
当球体在平面上遵循直线路径时,本文涉及旋转轧制球体的运动规划。由于球体的运动受到直线的约束,因此球体的旋转运动的控制对于收敛到球体的期望配置是必不可少的。在本文中,我们展示了一种基于新的基于几何的规划方法,其基于该非线性系统的全状态描述。首先,提出了运动规划的问题陈述。接下来,我们通过使用Darboux帧运动学开发作为虚拟表面实现的几何控制器。该虚拟表面产生基于弧长的输入,用于控制球体的轨迹。然后,迭代算法旨在调整所需配置的这些输入。模拟验证了所提出的方法的可行性。
translated by 谷歌翻译
机器人群系统现在对许多具有挑战性的应用越来越吸引人。任何机器人的主要任务是到达目的地,同时保持与其他机器人和障碍物的安全分离。在许多情况下,机器人需要在狭窄的走廊内移动,穿过窗户或门框。为了引导所有机器人在杂乱的环境中移动,在本文中仔细设计了没有障碍物的曲线虚拟管。管内部没有障碍物,即管内的区域可以被视为安全区。然后,提出了一种具有三个精细控制术语的分布式群控制器:线路接近项,机器人避免期限和管保持术语。正式分析和证据表明,可以在有限时间内解决曲线虚拟管通过问题。为方便起见,提出了一种具有近似控制性能的修改式控制器。最后,通过数值模拟和实验验证了所提出的方法的有效性。为了展示所提出的方法的优点,我们的方法和控制屏障功能方法之间的比较也在计算速度方面呈现。
translated by 谷歌翻译
与单个机器人相比,多个移动操纵器在需要移动性和灵活性的任务中表现出优势,尤其是在操纵/运输笨重的物体时。当对象和操纵器紧密地连接时,将形成闭合链,整个系统的运动将被限制在较低的歧管上。但是,当前对多机器人运动计划的研究并未完全考虑整个系统的形成,移动操纵器的冗余以及环境中的障碍,这使得任务具有挑战性。因此,本文提出了一个层次结构框架,以有效地解决上述挑战,其中集中式层计划离线运动的运动和分散层独立地实时探索每个机器人的冗余。此外,在集中式层中保证了封闭链,避免障碍物和地层限制的下限,其他计划者无法同时实现。此外,代表编队约束的分布的能力图可用于加快两层。仿真和实验结果都表明,所提出的框架的表现明显优于基准规划师。该系统可以在混乱的环境中绕过或跨越障碍物,并且该框架可以应用于不同数量的异质移动操纵器。
translated by 谷歌翻译
微型机构中的一个重要问题是如何控制具有全局控制信号的大型微型机器人。本文着重于控制大规模的微棉机器人,并使用车载物理有限状态机器来控制。我们介绍了基于组的控制的概念,这使得可以扩大群体大小,同时降低机器人制造和群体控制的复杂性。我们证明,基于组的控制系统可以从机器人位置上进行本地访问。我们进一步基于广泛的模拟,即该系统在全球可控。提出了一种非线性优化策略,以最大程度地减少控制努力来控制群体。我们还提出了一种适合在线使用的概率完整的避免碰撞方法。本文以对模拟中提出的方法的评估结束。
translated by 谷歌翻译
在过去的几十年中,对生物启发的智能及其对机器人技术的应用非常关注。本文对生物启发的智能进行了全面的调查,重点是神经动力学方法,尤其是对自主机器人系统的路径计划和控制。首先,引入了以生物启发的分流模型及其变体(添加剂模型和门控偶极模型),并详细介绍其主要特征。然后,回顾了实时路径计划和各种机器人系统控制的两个主要神经动力学应用。一个以神经动力学模型为特征的生物启发的神经网络框架,用于移动机器人,清洁机器人和水下机器人。生物启发的神经网络已在无碰撞导航和合作中广泛使用,没有任何学习程序,全球成本功能以及动态环境的先验知识。此外,还进一步讨论了针对各种机器人系统的生物启发的后台控制器,这些控制器能够在发生较大的初始跟踪误差时消除速度跳跃。最后,本文讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
我们提出并通过实验证明了双层机器人的反应性规划系统,在未开发,具有挑战性的地形上。该系统由低频规划线(5Hz)组成,用于找到渐近最佳路径和高频无功螺纹(300Hz)以适应机器人偏差。规划线程包括:多层本地地图,以计算地形上机器人的拖拉性;任何时间的全向控制Lyapunov函数(CLF),用于快速探索随机树星(RRT *),它会生成一个矢量字段,用于指定节点之间的运动;当最终目标位于当前地图之外时,子目标查找器;和一个有限状态的机器来处理高级任务决策。该系统还包括反应线,以避免在执行路径后用传统的RRT *算法出现的非平滑运动。具有机器人偏差的反应线应对,同时通过矢量字段(由闭环反馈策略定义)消除非平滑运动,其为机器人的步态控制器提供实时控制命令作为瞬时机器人姿势的函数。该系统在Cassie Blue的模拟和实验中进行了各种具有挑战性的户外地形和杂乱的室内场景,这是一个具有20个自由度的双模型机器人。所有实现在C ++中编码了机器人操作系统(ROS),可在https://github.com/umich-bipedlab/clf_reactive_planning_system中获得。
translated by 谷歌翻译
如果我们给机器人将对象从其当前位置移至未知环境中的另一个位置的任务,则机器人必须探索地图,确定所有类型的障碍物,然后确定完成任务的最佳途径。我们提出了一个数学模型,以找到一个最佳的路径计划,以避免与所有静态和移动障碍物发生冲突,并具有最小的完成时间和最小距离。在此模型中,不考虑障碍物和机器人周围的边界框,因此机器人可以在不与它们相撞的情况下非常接近障碍物移动。我们考虑了两种类型的障碍:确定性,其中包括所有静态障碍,例如不移动的墙壁以及所有动作具有固定模式和非确定性的移动障碍,其中包括所有障碍物,其运动都可以在任何方向上发生任何方向发生概率分布随时。我们还考虑了机器人的加速和减速,以改善避免碰撞的速度。
translated by 谷歌翻译
通常,可以将最佳运动计划作为本地和全球执行。在这样的计划中,支持本地或全球计划技术的选择主要取决于环境条件是动态的还是静态的。因此,最适当的选择是与全球计划一起使用本地计划或本地计划。当设计最佳运动计划是本地或全球的时,要记住的关键指标是执行时间,渐近最优性,对动态障碍的快速反应。与其他方法相比,这种计划方法可以更有效地解决上述目标指标,例如路径计划,然后进行平滑。因此,这项研究的最重要目标是分析相关文献,以了解运动计划,特别轨迹计划,问题,当应用于实时生成最佳轨迹的多局部航空车(MAV),影响力(MAV)时如何提出问题。列出的指标。作为研究的结果,轨迹计划问题被分解为一组子问题,详细列出了解决每个问题的方法列表。随后,总结了2010年至2022年最突出的结果,并以时间表的形式呈现。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译