机器人群系统现在对许多具有挑战性的应用越来越吸引人。任何机器人的主要任务是到达目的地,同时保持与其他机器人和障碍物的安全分离。在许多情况下,机器人需要在狭窄的走廊内移动,穿过窗户或门框。为了引导所有机器人在杂乱的环境中移动,在本文中仔细设计了没有障碍物的曲线虚拟管。管内部没有障碍物,即管内的区域可以被视为安全区。然后,提出了一种具有三个精细控制术语的分布式群控制器:线路接近项,机器人避免期限和管保持术语。正式分析和证据表明,可以在有限时间内解决曲线虚拟管通过问题。为方便起见,提出了一种具有近似控制性能的修改式控制器。最后,通过数值模拟和实验验证了所提出的方法的有效性。为了展示所提出的方法的优点,我们的方法和控制屏障功能方法之间的比较也在计算速度方面呈现。
translated by 谷歌翻译
为了在混乱的环境中引导多代理系统,连接的四边形虚拟管均设计供所有代理保持在其内部移动,其基础称为单梯形虚拟管。管子内部没有障碍物,即管内部的区域可将其视为安全区域。然后,为单个梯形虚拟试管传递问题提出了分布式群体控制器。该问题通过没有局部最小值的梯度矢量场方法解决。做出正式的分析和证明是为了表明所有代理都能够通过单梯形虚拟管。最后,为了方便实际使用,提出了一个修改的控制器。对于连接的四边形虚拟管,提出了修改的开关逻辑,以避免僵局并防止代理在虚拟管外移动。最后,通过数值模拟和实际实验来验证所提出方法的有效性。
translated by 谷歌翻译
For guiding the UAV swarm to pass through narrow openings, a trapezoid virtual tube is designed in our previous work. In this paper, we generalize its application range to the condition that there exist obstacles inside the trapezoid virtual tube and UAVs have strict speed constraints. First, a distributed vector field controller is proposed for the trapezoid virtual tube with no obstacle inside. The relationship between the trapezoid virtual tube and the speed constraints is also presented. Then, a switching logic for the obstacle avoidance is put forward. The key point is to divide the trapezoid virtual tube containing obstacles into several sub trapezoid virtual tubes with no obstacle inside. Formal analyses and proofs are made to show that all UAVs are able to pass through the trapezoid virtual tube safely. Besides, the effectiveness of the proposed method is validated by numerical simulations and real experiments.
translated by 谷歌翻译
无人驾驶飞行器(无人机)现在越来越多地进入业余和Com-Mercial用户。最近的研究中提出了几种类型的空域结构,包括几种结构化的自由飞行概念。本文为简单地,分布式协调结构化空域概念中的多变量的动作。这是作为自由飞行问题的制定,包括到目的地线和互际碰撞避免的融合。每个多变电器的目的行是先验的。此外,Lyapunov样功能是精心设计的,并进行了建议的分布式控制的正式分析和证明,表明可以解决自由飞行控制问题。更重要的是,由所提出的控制器,一旦进入另一个的安全区域,多个电源可以尽快远离另一个。给出了模拟和实验表明了所提出的方法的有效性。
translated by 谷歌翻译
In this work, we propose a collision-free source seeking control framework for unicycle robots traversing an unknown cluttered environment. In this framework, the obstacle avoidance is guided by the control barrier functions (CBF) embedded in quadratic programming and the source seeking control relies solely on the use of on-board sensors that measure signal strength of the source. To tackle the mixed relative degree of the CBF, we proposed three different CBF, namely the zeroing control barrier functions (ZCBF), exponential control barrier functions (ECBF), and reciprocal control barrier functions (RCBF) that can directly be integrated with our recent gradient-ascent source-seeking control law. We provide rigorous analysis of the three different methods and show the efficacy of the approaches in simulations using Matlab, as well as, using a realistic dynamic environment with moving obstacles in Gazebo/ROS.
translated by 谷歌翻译
我们提出协调指导矢量字段,以与机器人团队同时完成两个任务:首先,多个机器人的指导和导航到可能嵌入2D或3D中的可能不同的路径或表面;其次,他们的运动协调在跟踪他们的规定路径或表面时。运动配位是由路径或表面上的机器人之间所需的参数位移定义的。通过控制对应于指导矢量场之间的路径或表面参数的虚拟坐标来实现这种所需的位移。由动力学系统理论和Lyapunov理论支撑的严格数学保证,用于从所有初始位置上有效的分布式运动协调和机器人在路径或表面上导航。作为实用机器人应用的一个例子,我们从所提出的具有驱动饱和度的Dubins-car样模型的指导向量场中得出了一种对照算法。我们提出的算法分布并可扩展到任意数量的机器人。此外,广泛的说明性模拟和固定翼飞机户外实验验证了我们算法的有效性和鲁棒性。
translated by 谷歌翻译
本文考虑了非独立多机器人系统的同时位置和方向计划。与仅关注最终位置限制的常见研究不同,我们将非语言移动机器人建模为刚性机构,并引入机器人最终状态的方向和位置约束。换句话说,机器人不仅应达到指定的位置,而且还应同时指出所需的方向。这个问题的挑战在于全州运动计划的不足,因为只需要通过两个控制输入来计划三个州。为此,我们根据刚体建模提出了动态矢量场(DVF)。具体而言,机器人方向的动力学被带入矢量场,这意味着向量场不再是2-D平面上的静态,而是一个动态的,而动态场却随态度角度而变化。因此,每个机器人可以沿DVF的积分曲线移动以达到所需位置,与此同时,姿态角可以在方向动力学之后收敛到指定值。随后,通过在DVF的框架下设计一个圆形向量场,我们进一步研究了运动计划中的避免障碍物和相互企业的避免。最后,提供了数值仿真示例,以验证提出的方法的有效性。
translated by 谷歌翻译
我们开发了一种自主导航算法,用于在二维环境中运行的机器人杂乱,其具有任意凸形的障碍物。所提出的导航方法依赖于混合反馈,以保证机器人对预定目标位置的全局渐近稳定,同时确保无障碍工作空间的前向不变性。主要思想在于基于机器人相对于最近障碍的接近设计,在移动到目标模式和障碍物避免模式之间设计适当的切换策略。当机器人初始化远离障碍物的边界时,所提出的混合控制器产生连续速度输入轨迹。最后,我们为所提出的混合控制器的基于传感器的实现提供了一种算法过程,并通过一些仿真结果验证其有效性。
translated by 谷歌翻译
Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.
translated by 谷歌翻译
在本文中,我们为多机器人系统提供了一种分散和无通信的碰撞避免方法,该系统考虑了机器人定位和感测不确定性。该方法依赖于计算每个机器人的不确定感知安全区域,以在高斯分布的不确定性的假设下在环境中导航的其他机器人和环境中的静态障碍物。特别地,在每次步骤中,我们为每个机器人构建一个机器人约束的缓冲不确定性感知的voronoI细胞(B-UAVC)给出指定的碰撞概率阈值。通过将每个机器人的运动约束在其对应的B-UAVC内,即机器人和障碍物之间的碰撞概率仍然可以实现概率碰撞避免。所提出的方法是分散的,无通信,可扩展,具有机器人的数量和机器人本地化和感测不确定性的强大。我们将方法应用于单积分器,双积分器,差动驱动机器人和具有一般非线性动力学的机器人。对地面车辆,四轮车和异质机器人团队进行广泛的模拟和实验,以分析和验证所提出的方法。
translated by 谷歌翻译
Safe and smooth robot motion around obstacles is an essential skill for autonomous robots, especially when operating around people and other robots. Conventionally, due to real-time operation requirements and onboard computation limitations, many robot motion planning and control methods follow a two-step approach: first construct a (e.g., piecewise linear) collision-free reference path for a simplified robot model, and then execute the reference plan via path-following control for a more accurate and complex robot model. A challenge of such a decoupled robot motion planning and control method for highly dynamic robotic systems is ensuring the safety of path-following control as well as the successful completion of the reference plan. In this paper, we introduce a novel dynamical systems approach for online closed-loop time parametrization, called $\textit{a time governor}$, of a reference path for provably correct and safe path-following control based on feedback motion prediction, where the safety of robot motion under path-following control is continuously monitored using predicted robot motion. After introducing the general framework of time governors for safe path following, we present an example application for the fully actuated high-order robot dynamics using proportional-and-higher-order-derivative (PhD) path-following control whose feedback motion prediction is performed by Lyapunov ellipsoids and Vandemonde simplexes. In numerical simulations, we investigate the role of reference position and velocity feedback, and motion prediction on path-following performance and robot motion.
translated by 谷歌翻译
在过去的几十年中,对生物启发的智能及其对机器人技术的应用非常关注。本文对生物启发的智能进行了全面的调查,重点是神经动力学方法,尤其是对自主机器人系统的路径计划和控制。首先,引入了以生物启发的分流模型及其变体(添加剂模型和门控偶极模型),并详细介绍其主要特征。然后,回顾了实时路径计划和各种机器人系统控制的两个主要神经动力学应用。一个以神经动力学模型为特征的生物启发的神经网络框架,用于移动机器人,清洁机器人和水下机器人。生物启发的神经网络已在无碰撞导航和合作中广泛使用,没有任何学习程序,全球成本功能以及动态环境的先验知识。此外,还进一步讨论了针对各种机器人系统的生物启发的后台控制器,这些控制器能够在发生较大的初始跟踪误差时消除速度跳跃。最后,本文讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
This paper provides an introduction and overview of recent work on control barrier functions and their use to verify and enforce safety properties in the context of (optimization based) safety-critical controllers. We survey the main technical results and discuss applications to several domains including robotic systems.
translated by 谷歌翻译
共享工作空间中无线轨迹的生成对于大多数多机器人应用程序至关重要。但是,许多基于模型预测控制(MPC)的广泛使用的方法缺乏基础优化的可行性的理论保证。此外,当以分布式的方式应用无中央协调员时,僵局通常会无限期地互相阻挡。尽管存在诸如引入随机扰动之类的启发式方法,但没有进行深入的分析来验证这些措施。为此,我们提出了一种系统的方法,称为Infinite-Horizo​​n模型预测性控制,并通过死锁解决。 MPC用警告范围对拟议的修改后的Voronoi进行了配方,作为凸优化。基于此公式,对僵局的状况进行了正式分析,并证明与力平衡相似。提出了一个检测分辨率方案,该方案可以在甚至在发生之前有效地在网上检测到僵局,并且一旦检测到,便利用自适应分辨率方案来解决僵局,并在绩效上进行理论保证。此外,所提出的计划算法可确保在输入和模型约束下每个时间步骤的基础优化的递归可行性,对于所有机器人都是并发的,并且只需要本地通信。全面的模拟和实验研究是通过大规模多机器人系统进行的。与其他最先进的方法相比,尤其是在拥挤和高速场景中,成功率的显着提高了成功率。
translated by 谷歌翻译
如果我们给机器人将对象从其当前位置移至未知环境中的另一个位置的任务,则机器人必须探索地图,确定所有类型的障碍物,然后确定完成任务的最佳途径。我们提出了一个数学模型,以找到一个最佳的路径计划,以避免与所有静态和移动障碍物发生冲突,并具有最小的完成时间和最小距离。在此模型中,不考虑障碍物和机器人周围的边界框,因此机器人可以在不与它们相撞的情况下非常接近障碍物移动。我们考虑了两种类型的障碍:确定性,其中包括所有静态障碍,例如不移动的墙壁以及所有动作具有固定模式和非确定性的移动障碍,其中包括所有障碍物,其运动都可以在任何方向上发生任何方向发生概率分布随时。我们还考虑了机器人的加速和减速,以改善避免碰撞的速度。
translated by 谷歌翻译
通常,可以将最佳运动计划作为本地和全球执行。在这样的计划中,支持本地或全球计划技术的选择主要取决于环境条件是动态的还是静态的。因此,最适当的选择是与全球计划一起使用本地计划或本地计划。当设计最佳运动计划是本地或全球的时,要记住的关键指标是执行时间,渐近最优性,对动态障碍的快速反应。与其他方法相比,这种计划方法可以更有效地解决上述目标指标,例如路径计划,然后进行平滑。因此,这项研究的最重要目标是分析相关文献,以了解运动计划,特别轨迹计划,问题,当应用于实时生成最佳轨迹的多局部航空车(MAV),影响力(MAV)时如何提出问题。列出的指标。作为研究的结果,轨迹计划问题被分解为一组子问题,详细列出了解决每个问题的方法列表。随后,总结了2010年至2022年最突出的结果,并以时间表的形式呈现。
translated by 谷歌翻译
Safety critical systems involve the tight coupling between potentially conflicting control objectives and safety constraints. As a means of creating a formal framework for controlling systems of this form, and with a view toward automotive applications, this paper develops a methodology that allows safety conditions-expressed as control barrier functionsto be unified with performance objectives-expressed as control Lyapunov functions-in the context of real-time optimizationbased controllers. Safety conditions are specified in terms of forward invariance of a set, and are verified via two novel generalizations of barrier functions; in each case, the existence of a barrier function satisfying Lyapunov-like conditions implies forward invariance of the set, and the relationship between these two classes of barrier functions is characterized. In addition, each of these formulations yields a notion of control barrier function (CBF), providing inequality constraints in the control input that, when satisfied, again imply forward invariance of the set. Through these constructions, CBFs can naturally be unified with control Lyapunov functions (CLFs) in the context of a quadratic program (QP); this allows for the achievement of control objectives (represented by CLFs) subject to conditions on the admissible states of the system (represented by CBFs). The mediation of safety and performance through a QP is demonstrated on adaptive cruise control and lane keeping, two automotive control problems that present both safety and performance considerations coupled with actuator bounds.
translated by 谷歌翻译
我们提出了一种变体的乘法器(ADMM)的交替方向方法,以解决受约束的轨迹优化问题。我们的ADMM框架将联合优化分为小子问题,导致低迭代成本和分散的参数更新。我们的方法继承了原始内部点法(P-IPM)的理论特性(P-IPM),即保证碰撞避免和同型保存,同时是速度更快的秩序。我们已经分析了收敛性,并评估了我们的时间最佳多UAV轨迹优化的方法,以及多个机器人臂的同时达到多个机器人臂的方法,在那里我们考虑运动学 - ,动态限制和同级保留碰撞约束。我们的方法突出显示加速10-100倍,同时产生可比品质的轨迹作为最先进的P-IPM求解器。
translated by 谷歌翻译
这项研究提出了一种分布式算法,该算法通过自动决策,平滑的羊群和分布良好的捕获来使代理的自适应分组捕获多个目标。代理商根据环境信息做出自己的决定。提出了一种改进的人工潜在方法,以使代理能够平稳自然地改变形成以适应环境。拟议的策略确保了群体的协调发展在群体上陷入多个目标的现象。我们使用仿真实验和设计指标来验证提出方法的性能,以分析这些模拟和物理实验。
translated by 谷歌翻译
热方程驱动区域覆盖范围(HEDAC)是由潜在场的梯度引导的最先进的多机颈运动控制。特此实施有限元方法以获得Helmholtz部分微分方程的解决方案,该方程对测量运动控制的潜在字段进行了建模。这使我们能够调查任意形状的领域,并以优雅而健壮的方式包括Hedac的基本想法。对于简单的运动运动运动,通过将试剂运动用电位的梯度引导,可以成功处理障碍和边界避免限制。但是,包括其他约束,例如固定障碍物和移动障碍物的最小间隙距离以及最小的路径曲率半径,都需要控制算法的进一步交替。我们通过基于无碰撞逃生路线操纵的直接优化问题制定了一种相对简单但可靠的方法来处理这些约束的方法。这种方法提供了保证的避免碰撞机制,同时由于优化问题分配而在计算上是便宜的。在三个现实的测量场景模拟中评估了所提出的运动控制,显示了测量的有效性和控制算法的鲁棒性。此外,突出了由于定义不当的测量场景而引起的潜在操纵困难,我们提供了有关如何超越它们的指南。结果是有希望的,并表明了对自主测量和潜在的其他HEDAC利用的拟议受限的多代理运动控制的现实适用性。
translated by 谷歌翻译