透明的物体在家庭环境中无处不在,并且对视觉传感和感知系统构成了不同的挑战。透明物体的光学特性使常规的3D传感器仅对物体深度和姿势估计不可靠。这些挑战是由重点关注现实世界中透明对象的大规模RGB深度数据集突出了这些挑战。在这项工作中,我们为名为ClearPose的大规模现实世界RGB深度透明对象数据集提供了一个用于分割,场景级深度完成和以对象为中心的姿势估计任务的基准数据集。 ClearPose数据集包含超过350K标记的现实世界RGB深度框架和5M实例注释,涵盖了63个家用对象。该数据集包括在各种照明和遮挡条件下在日常生活中常用的对象类别,以及具有挑战性的测试场景,例如不透明或半透明物体的遮挡病例,非平面取向,液体的存在等。 - 艺术深度完成和对象构成清晰度上的深神经网络。数据集和基准源代码可在https://github.com/opipari/clearpose上获得。
translated by 谷歌翻译
视觉感知任务通常需要大量的标记数据,包括3D姿势和图像空间分割掩码。创建此类培训数据集的过程可能很难或耗时,可以扩展到一般使用的功效。考虑对刚性对象的姿势估计的任务。在大型公共数据集中接受培训时,基于神经网络的深层方法表现出良好的性能。但是,将这些网络调整为其他新颖对象,或针对不同环境的现有模型进行微调,需要大量的时间投资才能产生新标记的实例。为此,我们提出了ProgressLabeller作为一种方法,以更有效地以可扩展的方式从彩色图像序列中生成大量的6D姿势训练数据。 ProgressLabeller还旨在支持透明或半透明的对象,以深度密集重建的先前方法将失败。我们通过快速创建一个超过1M样品的数据集来证明ProgressLabeller的有效性,我们将其微调一个最先进的姿势估计网络,以显着提高下游机器人的抓地力。 ProgressLabeller是https://github.com/huijiezh/progresslabeller的开放源代码。
translated by 谷歌翻译
透明对象对视觉感知系统提出了多个不同的挑战。首先,他们缺乏区分视觉特征使透明对象比不透明的对象更难检测和本地化。即使人类也发现某些透明的表面几乎没有镜面反射或折射,例如玻璃门,难以感知。第二个挑战是,通常用于不透明对象感知的常见深度传感器由于其独特的反射特性而无法对透明对象进行准确的深度测量。由于这些挑战,我们观察到,同一类别(例如杯子)内的透明对象实例看起来与彼此相似,而不是同一类别的普通不透明对象。鉴于此观察结果,本文着手探讨类别级透明对象姿势估计的可能性,而不是实例级姿势估计。我们提出了TransNet,这是一种两阶段的管道,该管道学会使用局部深度完成和表面正常估计来估计类别级别的透明对象姿势。在最近的大规模透明对象数据集中,根据姿势估计精度评估了TransNet,并将其与最先进的类别级别姿势估计方法进行了比较。该比较的结果表明,TransNet可以提高透明对象的姿势估计准确性,并从随附的消融研究中提高了关键发现,这表明未来的方向改善了绩效。
translated by 谷歌翻译
我们介绍了日常桌面对象的998 3D型号的数据集及其847,000个现实世界RGB和深度图像。每个图像的相机姿势和对象姿势的准确注释都以半自动化方式执行,以促进将数据集用于多种3D应用程序,例如形状重建,对象姿势估计,形状检索等。3D重建由于缺乏适当的现实世界基准来完成该任务,并证明我们的数据集可以填补该空白。整个注释数据集以及注释工具和评估基线的源代码可在http://www.ocrtoc.org/3d-reconstruction.html上获得。
translated by 谷歌翻译
商业深度传感器通常会产生嘈杂和缺失的深度,尤其是在镜面和透明的对象上,这对下游深度或基于点云的任务构成了关键问题。为了减轻此问题,我们提出了一个强大的RGBD融合网络Swindrnet,以进行深度修复。我们进一步提出了域随机增强深度模拟(DREDS)方法,以使用基于物理的渲染模拟主动的立体声深度系统,并生成一个大规模合成数据集,该数据集包含130k Photorealistic RGB图像以及其模拟深度带有现实主义的传感器。为了评估深度恢复方法,我们还策划了一个现实世界中的数据集,即STD,该数据集捕获了30个混乱的场景,这些场景由50个对象组成,具有不同的材料,从透明,透明,弥漫性。实验表明,提议的DREDS数据集桥接了SIM到实地域间隙,因此,经过训练,我们的Swindrnet可以无缝地概括到其他真实的深度数据集,例如。 ClearGrasp,并以实时速度优于深度恢复的竞争方法。我们进一步表明,我们的深度恢复有效地提高了下游任务的性能,包括类别级别的姿势估计和掌握任务。我们的数据和代码可从https://github.com/pku-epic/dreds获得
translated by 谷歌翻译
透明的物体在我们的日常生活中很常见,并且经常在自动生产线中处理。对这些物体的强大基于视力的机器人抓握和操纵将对自动化有益。但是,在这种情况下,大多数当前的握把算法都会失败,因为它们严重依赖于深度图像,而普通的深度传感器通常无法产生准确的深度信息,因为由于光的反射和折射,它们都会用于透明对象。在这项工作中,我们通过为透明对象深度完成的大规模现实世界数据集提供了解决此问题,该数据集包含来自130个不同场景的57,715个RGB-D图像。我们的数据集是第一个大规模的,现实世界中的数据集,可提供地面真相深度,表面正常,透明的面具,以各种各样的场景和混乱。跨域实验表明,我们的数据集更具通用性,可以为模型提供更好的概括能力。此外,我们提出了一个端到端深度完成网络,该网络将RGB图像和不准确的深度图作为输入,并输出精制的深度图。实验证明了我们方法的效率,效率和鲁棒性优于以前的工作,并且能够处理有限的硬件资源下的高分辨率图像。真正的机器人实验表明,我们的方法也可以应用于新颖的透明物体牢固地抓住。完整的数据集和我们的方法可在www.graspnet.net/transcg上公开获得
translated by 谷歌翻译
估计对象的6D姿势是必不可少的计算机视觉任务。但是,大多数常规方法从单个角度依赖相机数据,因此遭受遮挡。我们通过称为MV6D的新型多视图6D姿势估计方法克服了这个问题,该方法从多个角度根据RGB-D图像准确地预测了混乱场景中所有对象的6D姿势。我们将方法以PVN3D网络为基础,该网络使用单个RGB-D图像来预测目标对象的关键点。我们通过从多个视图中使用组合点云来扩展此方法,并将每个视图中的图像与密集层层融合。与当前的多视图检测网络(例如Cosypose)相反,我们的MV6D可以以端到端的方式学习多个观点的融合,并且不需要多个预测阶段或随后对预测的微调。此外,我们介绍了三个新颖的影像学数据集,这些数据集具有沉重的遮挡的混乱场景。所有这些都从多个角度包含RGB-D图像,例如语义分割和6D姿势估计。即使在摄像头不正确的情况下,MV6D也明显优于多视图6D姿势估计中最新的姿势估计。此外,我们表明我们的方法对动态相机设置具有强大的态度,并且其准确性随着越来越多的观点而逐渐增加。
translated by 谷歌翻译
A key technical challenge in performing 6D object pose estimation from RGB-D image is to fully leverage the two complementary data sources. Prior works either extract information from the RGB image and depth separately or use costly post-processing steps, limiting their performances in highly cluttered scenes and real-time applications. In this work, we present DenseFusion, a generic framework for estimating 6D pose of a set of known objects from RGB-D images. DenseFusion is a heterogeneous architecture that processes the two data sources individually and uses a novel dense fusion network to extract pixel-wise dense feature embedding, from which the pose is estimated. Furthermore, we integrate an end-to-end iterative pose refinement procedure that further improves the pose estimation while achieving near real-time inference. Our experiments show that our method outperforms state-of-the-art approaches in two datasets, YCB-Video and LineMOD. We also deploy our proposed method to a real robot to grasp and manipulate objects based on the estimated pose. Our code and video are available at https://sites.google.com/view/densefusion/.
translated by 谷歌翻译
Estimating the 6D pose of objects is one of the major fields in 3D computer vision. Since the promising outcomes from instance-level pose estimation, the research trends are heading towards category-level pose estimation for more practical application scenarios. However, unlike well-established instance-level pose datasets, available category-level datasets lack annotation quality and provided pose quantity. We propose the new category level 6D pose dataset HouseCat6D featuring 1) Multi-modality of Polarimetric RGB+P and Depth, 2) Highly diverse 194 objects of 10 household object categories including 2 photometrically challenging categories, 3) High-quality pose annotation with an error range of only 1.35 mm to 1.74 mm, 4) 41 large scale scenes with extensive viewpoint coverage, 5) Checkerboard-free environment throughout the entire scene. We also provide benchmark results of state-of-the-art category-level pose estimation networks.
translated by 谷歌翻译
在许多机器人应用中,要执行已知,刚体对象及其随后的抓握的6多-DOF姿势估计的环境设置几乎保持不变,甚至可能是机器人事先知道的。在本文中,我们将此问题称为特定实例的姿势估计:只有在有限的一组熟悉的情况下,该机器人将以高度准确性估算姿势。场景中的微小变化,包括照明条件和背景外观的变化,是可以接受的,但没有预期的改变。为此,我们提出了一种方法,可以快速训练和部署管道,以估算单个RGB图像的对象的连续6-DOF姿势。关键的想法是利用已知的相机姿势和刚性的身体几何形状部分自动化大型标记数据集的生成。然后,数据集以及足够的域随机化来监督深度神经网络的培训,以预测语义关键。在实验上,我们证明了我们提出的方法的便利性和有效性,以准确估计物体姿势,仅需要少量的手动注释才能进行训练。
translated by 谷歌翻译
Estimating 6D poses of objects from images is an important problem in various applications such as robot manipulation and virtual reality. While direct regression of images to object poses has limited accuracy, matching rendered images of an object against the input image can produce accurate results. In this work, we propose a novel deep neural network for 6D pose matching named DeepIM. Given an initial pose estimation, our network is able to iteratively refine the pose by matching the rendered image against the observed image. The network is trained to predict a relative pose transformation using a disentangled representation of 3D location and 3D orientation and an iterative training process. Experiments on two commonly used benchmarks for 6D pose estimation demonstrate that DeepIM achieves large improvements over stateof-the-art methods. We furthermore show that DeepIM is able to match previously unseen objects.
translated by 谷歌翻译
在这项工作中,我们通过利用3D Suite Blender生产具有6D姿势的合成RGBD图像数据集来提出数据生成管道。提出的管道可以有效地生成大量的照片现实的RGBD图像,以了解感兴趣的对象。此外,引入了域随机化技术的集合来弥合真实数据和合成数据之间的差距。此外,我们通过整合对象检测器Yolo-V4微型和6D姿势估计算法PVN3D来开发实时的两阶段6D姿势估计方法,用于时间敏感的机器人应用。借助提出的数据生成管道,我们的姿势估计方法可以仅使用没有任何预训练模型的合成数据从头开始训练。在LineMod数据集评估时,与最先进的方法相比,所得网络显示出竞争性能。我们还证明了在机器人实验中提出的方法,在不同的照明条件下从混乱的背景中抓住家用物体。
translated by 谷歌翻译
6D object pose estimation problem has been extensively studied in the field of Computer Vision and Robotics. It has wide range of applications such as robot manipulation, augmented reality, and 3D scene understanding. With the advent of Deep Learning, many breakthroughs have been made; however, approaches continue to struggle when they encounter unseen instances, new categories, or real-world challenges such as cluttered backgrounds and occlusions. In this study, we will explore the available methods based on input modality, problem formulation, and whether it is a category-level or instance-level approach. As a part of our discussion, we will focus on how 6D object pose estimation can be used for understanding 3D scenes.
translated by 谷歌翻译
在全球坐标系中,基于颜色的双手3D姿势估计在许多应用中至关重要。但是,很少有专门用于此任务的数据集,并且没有现有数据集支持在非实验室环境中的估计。这在很大程度上归因于3D手姿势注释所需的复杂数据收集过程,这也导致难以获得野生估计所需的视觉多样性水平的实例。为了实现这一目标,最近提出了一个大规模的数据集EGO2HANDS来解决野外双手分割和检测的任务。拟议的基于组成的数据生成技术可以创建具有质量,数量和多样性的双手实例,从而将其推广到看不见的域。在这项工作中,我们提出了EGO2Handspose,这是包含3D手姿势注释的EGO2HAND的扩展,并且是第一个在看不见域中启用基于颜色的两手3D跟踪的数据集。为此,我们开发了一组参数拟合算法以启用1)使用单个图像的3D手姿势注释,2)自动转换从2D到3D手势和3)具有时间一致性的准确双手跟踪。我们在多阶段管道上提供了增量的定量分析,并表明我们数据集中的培训达到了最新的结果,这些结果大大胜过其他数据集,以实现以自我为中心的双手全球3D姿势估计的任务。
translated by 谷歌翻译
本文介绍了一个数据集,用于培训和评估方法,以估算由标准RGB摄像机捕获的任务演示中手持工具的6D姿势。尽管6D姿势估计方法取得了重大进展,但它们的性能通常受到严重遮挡的对象的限制,这在模仿学习中是一个常见的情况,而操纵手通常会部分遮住对象。当前,缺乏数据集可以使这些条件的稳健6D姿势估计方法开发。为了克服这个问题,我们收集了一个新的数据集(IMITROB),该数据集针对模仿学习和其他人类持有工具并执行任务的其他应用中的6D姿势估计。该数据集包含三个不同工具和六个操纵任务的图像序列,这些任务具有两个相机观点,四个人类受试者和左/右手。每个图像都伴随着由HTC Vive运动跟踪设备获得的6D对象姿势的准确地面真相测量。通过训练和评估各种设置中的最新6D对象估计方法(DOPE)来证明数据集的使用。数据集和代码可在http://imitrob.ciirc.cvut.cz/imitrobdataset.php上公开获得。
translated by 谷歌翻译
光有许多可以通过视觉传感器被动测量的特性。色带分离波长和强度可以说是单眼6D对象姿态估计的最常用的波长。本文探讨了互补偏振信息的互补信息,即光波振荡的方向,可以影响姿态预测的准确性。一种混合模型,利用数据驱动的学习策略共同利用物理代理,并在具有不同量的光度复杂度的物体上进行设计和仔细测试。我们的设计不仅显着提高了与光度 - 最先进的方法相关的姿态精度,而且还使对象姿势估计用于高反射性和透明的物体。
translated by 谷歌翻译
The goal of this paper is to estimate the 6D pose and dimensions of unseen object instances in an RGB-D image. Contrary to "instance-level" 6D pose estimation tasks, our problem assumes that no exact object CAD models are available during either training or testing time. To handle different and unseen object instances in a given category, we introduce Normalized Object Coordinate Space (NOCS)-a shared canonical representation for all possible object instances within a category. Our region-based neural network is then trained to directly infer the correspondence from observed pixels to this shared object representation (NOCS) along with other object information such as class label and instance mask. These predictions can be combined with the depth map to jointly estimate the metric 6D pose and dimensions of multiple objects in a cluttered scene. To train our network, we present a new contextaware technique to generate large amounts of fully annotated mixed reality data. To further improve our model and evaluate its performance on real data, we also provide a fully annotated real-world dataset with large environment and instance variation. Extensive experiments demonstrate that the proposed method is able to robustly estimate the pose and size of unseen object instances in real environments while also achieving state-of-the-art performance on standard 6D pose estimation benchmarks.
translated by 谷歌翻译
6多机器人抓钩是一个持久但未解决的问题。最近的方法利用强3D网络从深度传感器中提取几何抓握表示形式,表明对公共物体的准确性卓越,但对光度化挑战性物体(例如,透明或反射材料中的物体)进行不满意。瓶颈在于这些物体的表面由于光吸收或折射而无法反射准确的深度。在本文中,与利用不准确的深度数据相反,我们提出了第一个称为MonograspNet的只有RGB的6-DOF握把管道,该管道使用稳定的2D特征同时处理任意对象抓握,并克服由光学上具有挑战性挑战的对象引起的问题。 MonograspNet利用关键点热图和正常地图来恢复由我们的新型表示形式表示的6-DOF抓握姿势,该表示的2D键盘具有相应的深度,握把方向,抓握宽度和角度。在真实场景中进行的广泛实验表明,我们的方法可以通过在抓住光学方面挑战的对象方面抓住大量对象并超过基于深度的竞争者的竞争成果。为了进一步刺激机器人的操纵研究,我们还注释并开源一个多视图和多场景现实世界抓地数据集,其中包含120个具有20m精确握把标签的混合光度复杂性对象。
translated by 谷歌翻译
我们提出了一个基于按键的对象级别的SLAM框架,该框架可以为对称和不对称对象提供全球一致的6DOF姿势估计。据我们所知,我们的系统是最早利用来自SLAM的相机姿势信息的系统之一,以提供先验知识,以跟踪对称对象的关键点 - 确保新测量与当前的3D场景一致。此外,我们的语义关键点网络经过训练,可以预测捕获预测的真实错误的关键点的高斯协方差,因此不仅可以作为系统优化问题中残留物的权重,而且还可以作为检测手段有害的统计异常值,而无需选择手动阈值。实验表明,我们的方法以6DOF对象姿势估算和实时速度为最先进的状态提供了竞争性能。我们的代码,预培训模型和关键点标签可用https://github.com/rpng/suo_slam。
translated by 谷歌翻译
Estimating the 6D pose of known objects is important for robots to interact with the real world. The problem is challenging due to the variety of objects as well as the complexity of a scene caused by clutter and occlusions between objects. In this work, we introduce PoseCNN, a new Convolutional Neural Network for 6D object pose estimation. PoseCNN estimates the 3D translation of an object by localizing its center in the image and predicting its distance from the camera. The 3D rotation of the object is estimated by regressing to a quaternion representation. We also introduce a novel loss function that enables PoseCNN to handle symmetric objects. In addition, we contribute a large scale video dataset for 6D object pose estimation named the YCB-Video dataset. Our dataset provides accurate 6D poses of 21 objects from the YCB dataset observed in 92 videos with 133,827 frames. We conduct extensive experiments on our YCB-Video dataset and the OccludedLINEMOD dataset to show that PoseCNN is highly robust to occlusions, can handle symmetric objects, and provide accurate pose estimation using only color images as input. When using depth data to further refine the poses, our approach achieves state-of-the-art results on the challenging OccludedLINEMOD dataset. Our code and dataset are available at https://rse-lab.cs.washington.edu/projects/posecnn/.
translated by 谷歌翻译