在有限的数据分布漂移下证明模型性能的鲁棒性最近引起了分布鲁棒性的保护。但是,现有技术要么对可以认证的模型类别和损失功能做出了强有力的假设,例如通过Lipschitz的梯度连续性表达的平滑度,要么需要解决复杂的优化问题。结果,这些技术的更广泛应用当前受其可伸缩性和灵活性的限制 - 这些技术通常不会扩展到具有现代深神经网络的大规模数据集,或者无法处理可能不太平滑的损失功能,例如0-1损失。在本文中,我们着重于证明黑框模型和有限损失功能的分配鲁棒性的问题,并根据Hellinger距离提出了一个新颖的认证框架。我们的认证技术缩放到Imagenet规模的数据集,复杂的模型以及各种损失功能。然后,我们专注于通过这种可伸缩性和灵活性启用的一个特定应用程序,即,对大型神经网络和损失功能(例如准确性和AUC)的跨域概括进行认证。我们在许多数据集上实验验证了我们的认证方法,从Imagenet(从Imagenet)提供了第一个非易变认证的偏置概括到较小的分类任务,我们能够与最先进的任务进行比较艺术并表明我们的方法的性能要好得多。
translated by 谷歌翻译
尽管现代的大规模数据集通常由异质亚群(例如,多个人口统计组或多个文本语料库)组成 - 最小化平均损失的标准实践并不能保证所有亚人群中均匀的低损失。我们提出了一个凸面程序,该过程控制给定尺寸的所有亚群中最差的表现。我们的程序包括有限样本(非参数)收敛的保证,可以保证最坏的亚群。从经验上讲,我们观察到词汇相似性,葡萄酒质量和累犯预测任务,我们最糟糕的程序学习了对不看到看不见的亚人群的模型。
translated by 谷歌翻译
我们提出了Pac-Bayes风格的概括结合,该结合可以用各种积分概率指标(IPM)替换KL-Divergence。我们提供了这种结合的实例,IPM是总变异度量和Wasserstein距离。获得的边界的一个显着特征是,它们在最坏的情况下(当前和后距离彼此远距离时)在经典均匀收敛边界之间自然插值,并且在更好的情况下(后验和先验都关闭时)优选界限。这说明了使用算法和数据依赖性组件加强经典概括界限的可能性,从而使它们更适合分析使用大假设空间的算法。
translated by 谷歌翻译
所有著名的机器学习算法构成了受监督和半监督的学习工作,只有在一个共同的假设下:培训和测试数据遵循相同的分布。当分布变化时,大多数统计模型必须从新收集的数据中重建,对于某些应用程序,这些数据可能是昂贵或无法获得的。因此,有必要开发方法,以减少在相关领域中可用的数据并在相似领域中进一步使用这些数据,从而减少需求和努力获得新的标签样品。这引起了一个新的机器学习框架,称为转移学习:一种受人类在跨任务中推断知识以更有效学习的知识能力的学习环境。尽管有大量不同的转移学习方案,但本调查的主要目的是在特定的,可以说是最受欢迎的转移学习中最受欢迎的次级领域,概述最先进的理论结果,称为域适应。在此子场中,假定数据分布在整个培训和测试数据中发生变化,而学习任务保持不变。我们提供了与域适应性问题有关的现有结果的首次最新描述,该结果涵盖了基于不同统计学习框架的学习界限。
translated by 谷歌翻译
Existing generalization bounds fail to explain crucial factors that drive generalization of modern neural networks. Since such bounds often hold uniformly over all parameters, they suffer from over-parametrization, and fail to account for the strong inductive bias of initialization and stochastic gradient descent. As an alternative, we propose a novel optimal transport interpretation of the generalization problem. This allows us to derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the earned prediction function in the data space. Therefore, our bounds are agnostic to the parametrization of the model and work well when the number of training samples is much smaller than the number of parameters. With small modifications, our approach yields accelerated rates for data on low-dimensional manifolds, and guarantees under distribution shifts. We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.
translated by 谷歌翻译
Empirical risk minimization (ERM) and distributionally robust optimization (DRO) are popular approaches for solving stochastic optimization problems that appear in operations management and machine learning. Existing generalization error bounds for these methods depend on either the complexity of the cost function or dimension of the uncertain parameters; consequently, the performance of these methods is poor for high-dimensional problems with objective functions under high complexity. We propose a simple approach in which the distribution of uncertain parameters is approximated using a parametric family of distributions. This mitigates both sources of complexity; however, it introduces a model misspecification error. We show that this new source of error can be controlled by suitable DRO formulations. Our proposed parametric DRO approach has significantly improved generalization bounds over existing ERM / DRO methods and parametric ERM for a wide variety of settings. Our method is particularly effective under distribution shifts. We also illustrate the superior performance of our approach on both synthetic and real-data portfolio optimization and regression tasks.
translated by 谷歌翻译
域的概括(DG)通过利用来自多个相关分布或域的标记培训数据在看不见的测试分布上表现良好的预测因子。为了实现这一目标,标准公式优化了所有可能域的最差性能。但是,由于最糟糕的转变在实践中的转变极不可能,这通常会导致过度保守的解决方案。实际上,最近的一项研究发现,没有DG算法在平均性能方面优于经验风险最小化。在这项工作中,我们认为DG既不是最坏的问题,也不是一个普通的问题,而是概率问题。为此,我们为DG提出了一个概率框架,我们称之为可能的域概括,其中我们的关键想法是在训练期间看到的分配变化应在测试时告诉我们可能的变化。为了实现这一目标,我们将培训和测试域明确关联为从同一基础元分布中获取的,并提出了一个新的优化问题 - 分数风险最小化(QRM) - 要求该预测因子以很高的概率概括。然后,我们证明了QRM:(i)产生的预测因子,这些预测因素将具有所需概率的新域(给定足够多的域和样本); (ii)随着概括的所需概率接近一个,恢复因果预测因子。在我们的实验中,我们引入了针对DG的更全面的以分位数评估协议,并表明我们的算法在真实和合成数据上的最先进基准都优于最先进的基准。
translated by 谷歌翻译
Wasserstein的分布在强大的优化方面已成为强大估计的有力框架,享受良好的样本外部性能保证,良好的正则化效果以及计算上可易处理的双重重新纠正。在这样的框架中,通过将最接近经验分布的所有概率分布中最接近的所有概率分布中最小化的最差预期损失来最大程度地减少估计量。在本文中,我们提出了一个在噪声线性测量中估算未知参数的Wasserstein分布稳定的M估计框架,我们专注于分析此类估计器的平方误差性能的重要且具有挑战性的任务。我们的研究是在现代的高维比例状态下进行的,在该状态下,环境维度和样品数量都以相对的速度进行编码,该速率以编码问题的下/过度参数化的比例。在各向同性高斯特征假设下,我们表明可以恢复平方误差作为凸 - 串联优化问题的解,令人惊讶的是,它在最多四个标量变量中都涉及。据我们所知,这是在Wasserstein分布强劲的M估计背景下研究此问题的第一项工作。
translated by 谷歌翻译
我们观察到,给定两个(兼容的)函数类别$ \ MATHCAL {f} $和$ \ MATHCAL {h} $,具有较小的容量,按其均匀覆盖的数字测量,组成类$ \ Mathcal {H} \ Circ \ Mathcal {f} $可能会变得非常大,甚至无限。然后,我们证明,在用$ \ Mathcal {h} $构成$ \ Mathcal {f} $的输出中,添加少量高斯噪声可以有效地控制$ \ Mathcal {H} \ Circ \ Mathcal { F} $,提供模块化设计的一般配方。为了证明我们的结果,我们定义了均匀覆盖随机函数数量的新概念,相对于总变异和瓦斯坦斯坦距离。我们将结果实例化,以实现多层Sigmoid神经​​网络。 MNIST数据集的初步经验结果表明,在现有统一界限上改善所需的噪声量在数值上可以忽略不计(即,元素的I.I.D. I.I.D.高斯噪声,具有标准偏差$ 10^{ - 240} $)。源代码可从https://github.com/fathollahpour/composition_noise获得。
translated by 谷歌翻译
使用历史观察数据的政策学习是发现广泛应用程序的重要问题。示例包括选择优惠,价格,要发送给客户的广告,以及选择要开出患者的药物。但是,现有的文献取决于这样一个关键假设,即将在未来部署学习策略的未来环境与生成数据的过去环境相同 - 这个假设通常是错误或太粗糙的近似值。在本文中,我们提高了这一假设,并旨在通过不完整的观察数据来学习一项稳健的策略。我们首先提出了一个政策评估程序,该程序使我们能够评估政策在最坏情况下的转变下的表现。然后,我们为此建议的政策评估计划建立了中心限制定理类型保证。利用这种评估方案,我们进一步提出了一种新颖的学习算法,该算法能够学习一项对对抗性扰动和未知协变量转移的策略,并根据统一收敛理论的性能保证进行了绩效保证。最后,我们从经验上测试了合成数据集中提出的算法的有效性,并证明它提供了使用标准策略学习算法缺失的鲁棒性。我们通过在现实世界投票数据集的背景下提供了我们方法的全面应用来结束本文。
translated by 谷歌翻译
自从Russo和Zou(2016,2019)和Xu and Raginsky(2017)的著名作品以来,众所周知,监督学习算法的概括性错误可以根据其输入和输出,输出和输出之间的相互信息来界定。鉴于任何固定假设的丧失都具有亚高斯的尾巴。在这项工作中,我们将此结果推广到Shannon的共同信息的标准选择之外,以衡量输入和输出之间的依赖性。 Our main result shows that it is indeed possible to replace the mutual information by any strongly convex function of the joint input-output distribution, with the subgaussianity condition on the losses replaced by a bound on an appropriately chosen norm capturing the geometry of the dependence measure 。这使我们能够得出一系列的概括范围,这些范围是全新的,或者增强了以前已知的范围。示例包括按$ p $ norm差异和Wasserstein-2距离表示的界限,这些距离分别适用于重尾损失分布和高度平滑的损失功能。我们的分析完全基于来自凸分析的基本工具,通过跟踪与依赖度量和损失函数相关的潜在功能的增长。
translated by 谷歌翻译
比较概率分布是许多机器学习算法的关键。最大平均差异(MMD)和最佳运输距离(OT)是在过去几年吸引丰富的关注的概率措施之间的两类距离。本文建立了一些条件,可以通过MMD规范控制Wassersein距离。我们的作品受到压缩统计学习(CSL)理论的推动,资源有效的大规模学习的一般框架,其中训练数据总结在单个向量(称为草图)中,该训练数据捕获与所考虑的学习任务相关的信息。在CSL中的现有结果启发,我们介绍了H \“较旧的较低限制的等距属性(H \”较旧的LRIP)并表明这家属性具有有趣的保证对压缩统计学习。基于MMD与Wassersein距离之间的关系,我们通过引入和研究学习任务的Wassersein可读性的概念来提供压缩统计学习的保证,即概率分布之间的某些特定于特定的特定度量,可以由Wassersein界定距离。
translated by 谷歌翻译
我们研究了广义熵的连续性属性作为潜在的概率分布的函数,用动作空间和损失函数定义,并使用此属性来回答统计学习理论中的基本问题:各种学习方法的过度风险分析。我们首先在几种常用的F分歧,Wassersein距离的熵差异导出了两个分布的熵差,这取决于动作空间的距离和损失函数,以及由熵产生的Bregman发散,这也诱导了两个分布之间的欧几里德距离方面的界限。对于每个一般结果的讨论给出了示例,使用现有的熵差界进行比较,并且基于新结果导出新的相互信息上限。然后,我们将熵差异界限应用于统计学习理论。结果表明,两种流行的学习范式,频繁学习和贝叶斯学习中的过度风险都可以用不同形式的广义熵的连续性研究。然后将分析扩展到广义条件熵的连续性。扩展为贝叶斯决策提供了不匹配的分布来提供性能范围。它也会导致第三个划分的学习范式的过度风险范围,其中决策规则是在经验分布的预定分布家族的预测下进行最佳设计。因此,我们通过广义熵的连续性建立了统计学习三大范式的过度风险分析的统一方法。
translated by 谷歌翻译
在数据驱动的优化和机器学习中获得概括界限的建立方法主要基于从经验风险最小化(ERM)中的解决方案,这些解决方案取决于假设类别的功能复杂性。在本文中,我们提出了一条替代途径,以从分布强劲的优化(DRO)获得解决方案上的这些界限,这是一个基于最坏情况分析的最新数据驱动的优化框架,以及设置为捕获统计不确定性的模棱两可的概念。与ERM中的假设类复杂性相反,我们的DRO界限取决于歧义集的几何形状及其与真实损耗函数的兼容性。值得注意的是,当将最大平均差异用作DRO距离度量标准时,我们的分析意味着对假设类别的依赖性的概括范围似乎是最小的:结合仅取决于真实的损失函数,独立于假设类中的任何其他候选者。据我们所知,这是文献中这种类型的第一个概括,我们希望我们的发现可以更好地了解DRO,尤其是其在损失最小化和其他机器学习应用方面的收益。
translated by 谷歌翻译
Machine learning models are often susceptible to adversarial perturbations of their inputs. Even small perturbations can cause state-of-the-art classifiers with high "standard" accuracy to produce an incorrect prediction with high confidence. To better understand this phenomenon, we study adversarially robust learning from the viewpoint of generalization. We show that already in a simple natural data model, the sample complexity of robust learning can be significantly larger than that of "standard" learning. This gap is information theoretic and holds irrespective of the training algorithm or the model family. We complement our theoretical results with experiments on popular image classification datasets and show that a similar gap exists here as well. We postulate that the difficulty of training robust classifiers stems, at least partially, from this inherently larger sample complexity.
translated by 谷歌翻译
我们提出了一种统一的技术,用于顺序估计分布之间的凸面分歧,包括内核最大差异等积分概率度量,$ \ varphi $ - 像Kullback-Leibler发散,以及最佳运输成本,例如Wassersein距离的权力。这是通过观察到经验凸起分歧(部分有序)反向半角分离的实现来实现的,而可交换过滤耦合,其具有这些方法的最大不等式。这些技术似乎是对置信度序列和凸分流的现有文献的互补和强大的补充。我们构建一个离线到顺序设备,将各种现有的离线浓度不等式转换为可以连续监测的时间均匀置信序列,在任意停止时间提供有效的测试或置信区间。得到的顺序边界仅在相应的固定时间范围内支付迭代对数价格,保留对问题参数的相同依赖性(如适用的尺寸或字母大小)。这些结果也适用于更一般的凸起功能,如负差分熵,实证过程的高度和V型统计。
translated by 谷歌翻译
数据驱动决策的经验风险最小化方法假设我们可以从与我们想要在下面部署的条件相同的条件下绘制的数据中学习决策规则。但是,在许多设置中,我们可能会担心我们的培训样本是有偏见的,并且某些组(以可观察或无法观察到的属性为特征)可能相对于一般人群而言是不足或代表过多的;在这种情况下,对培训集的经验风险最小化可能无法产生在部署时表现良好的规则。我们基于分配强大的优化和灵敏度分析的概念,我们提出了一种学习决策规则的方法,该方法将在测试分布家族的家庭中最小化最糟糕的案例风险,其有条件的结果分布$ y $ y $ y $ y $ x $有所不同有条件的训练分布最多是一个恒定因素,并且相对于训练数据的协变量分布,其协变量分布绝对是连续的。我们应用Rockafellar和Uryasev的结果表明,此问题等同于增强的凸风险最小化问题。我们提供了使用筛子的方法来学习健壮模型的统计保证,并提出了一种深度学习算法,其损失函数捕获了我们的稳健性目标。我们从经验上验证了我们在模拟中提出的方法和使用MIMIC-III数据集的案例研究。
translated by 谷歌翻译
We study distributionally robust optimization (DRO) with Sinkhorn distance -- a variant of Wasserstein distance based on entropic regularization. We provide convex programming dual reformulation for a general nominal distribution. Compared with Wasserstein DRO, it is computationally tractable for a larger class of loss functions, and its worst-case distribution is more reasonable. We propose an efficient first-order algorithm with bisection search to solve the dual reformulation. We demonstrate that our proposed algorithm finds $\delta$-optimal solution of the new DRO formulation with computation cost $\tilde{O}(\delta^{-3})$ and memory cost $\tilde{O}(\delta^{-2})$, and the computation cost further improves to $\tilde{O}(\delta^{-2})$ when the loss function is smooth. Finally, we provide various numerical examples using both synthetic and real data to demonstrate its competitive performance and light computational speed.
translated by 谷歌翻译
在因果推理和强盗文献中,基于观察数据的线性功能估算线性功能的问题是规范的。我们分析了首先估计治疗效果函数的广泛的两阶段程序,然后使用该数量来估计线性功能。我们证明了此类过程的均方误差上的非反应性上限:这些边界表明,为了获得非反应性最佳程序,应在特定加权$ l^2 $中最大程度地估算治疗效果的误差。 -规范。我们根据该加权规范的约束回归分析了两阶段的程序,并通过匹配非轴突局部局部最小值下限,在有限样品中建立了实例依赖性最优性。这些结果表明,除了取决于渐近效率方差之外,最佳的非质子风险除了取决于样本量支持的最富有函数类别的真实结果函数与其近似类别之间的加权规范距离。
translated by 谷歌翻译
转移学习或域适应性与机器学习问题有关,在这些问题中,培训和测试数据可能来自可能不同的概率分布。在这项工作中,我们在Russo和Xu发起的一系列工作之后,就通用错误和转移学习算法的过量风险进行了信息理论分析。我们的结果也许表明,也许正如预期的那样,kullback-leibler(kl)Divergence $ d(\ mu || \ mu')$在$ \ mu $和$ \ mu'$表示分布的特征中起着重要作用。培训数据和测试测试。具体而言,我们为经验风险最小化(ERM)算法提供了概括误差上限,其中两个分布的数据在训练阶段都可用。我们进一步将分析应用于近似的ERM方法,例如Gibbs算法和随机梯度下降方法。然后,我们概括了与$ \ phi $ -Divergence和Wasserstein距离绑定的共同信息。这些概括导致更紧密的范围,并且在$ \ mu $相对于$ \ mu' $的情况下,可以处理案例。此外,我们应用了一套新的技术来获得替代的上限,该界限为某些学习问题提供了快速(最佳)的学习率。最后,受到派生界限的启发,我们提出了Infoboost算法,其中根据信息测量方法对源和目标数据的重要性权重进行了调整。经验结果表明了所提出的算法的有效性。
translated by 谷歌翻译