旨在估算每个广告接触点在转换旅程中的贡献的多点触摸归因(MTA)对于预算分配和自动广告至关重要。现有方法首先训练模型,以通过历史数据来预测广告旅程的转换概率,并使用反事实预测来计算每个接触点的归因。这些作品的假设是转换预测模型是公正的,即,它可以对任何随机分配的旅程(包括事实和反事实)提供准确的预测。然而,由于根据用户偏好推荐裸露的广告,因此这个假设并不总是存在。用户的这种混杂偏见将导致反事实预测中的分布(OOD)问题,并导致归因中的概念漂移。在本文中,我们定义了因果MTA任务,并提出Causalmta来消除用户偏好的影响。它从系统地消除了静态和动态偏好的混杂偏见,以使用历史数据来学习转换预测模型。我们还提供理论分析,以证明Causalmta可以学习具有足够数据的无偏见模型。电子商务公司的公共数据集和印象数据的广泛实验表明,Causalmta不仅比最先进的方法实现了更好的预测性能,而且还可以在不同的广告渠道上产生有意义的属性信用。
translated by 谷歌翻译
单击后键盘转换为指示用户偏好的强信号,是构建推荐系统的良性。但是,由于选择偏差,即,观察到的单击事件通常会发生在用户的首选项目,准确地估计点击后击率(CVR)是具有挑战性的。目前,大多数现有方法利用反事实学习到Debias推荐系统。其中,双重稳健(DR)估计器通过以双重稳健的方式组合基于误差估算的(EIB)估计和逆倾向分数(IPS)估计来实现竞争性能。然而,不准确的误差估算可能导致其比IPS估计器更高的方差。更糟糕的是,现有方法通常使用简单的模型 - 不可知方法来估计归纳错误,这不足以近似于近似于动态改变的模型相关目标(即预测模型的梯度方向)。为了解决这些问题,我们首先导出DR估算器的偏差和方差。基于它,已经提出了一种更强大的双重稳健(MRDR)估计器,以进一步降低其差异,同时保持其双重稳健性。此外,我们为MRDR估算器提出了一种新的双重学习方法,可以将误差归纳转换为一般的CVR估计。此外,我们经验验证所提出的学习方案可以进一步消除估算学习的高方差问题。为了评估其有效性,在半合成数据集和两个现实世界数据集上进行了广泛的实验。结果证明了所提出的方法的优越性在最先进的方法中。代码可在https://github.com/guosyjlu/mrdr-dl上获得。
translated by 谷歌翻译
推荐系统通常会从各种用户行为中学习用户兴趣,包括点击和点击后行为(例如,喜欢和喜欢)。但是,这些行为不可避免地表现出受欢迎程度的偏见,从而导致一些不公平的问题:1)对于具有相似质量,更受欢迎的物品的物品会获得更多的曝光; 2)更糟糕的是,受欢迎程度较低的流行物品可能会获得更多的曝光率。现有关于缓解流行偏见的工作会盲目消除偏见,通常忽略项目质量的影响。我们认为,不同用户行为(例如,转换率)之间的关系实际上反映了项目质量。因此,为了处理不公平的问题,我们建议通过考虑多种用户行为来减轻流行性偏见。在这项工作中,我们研究了多行为推荐中相互作用生成过程背后的因果关系。具体来说,我们发现:1)项目受欢迎程度是暴露的项目和用户的点击交互之间的混杂因素,导致第一个不公平; 2)一些隐藏的混杂因素(例如,项目生产者的声誉)影响了项目的流行和质量,导致第二次不公平。为了减轻这些混杂问题,我们提出了一个因果框架来估计因果效应,该因果效应利用后门调整以阻止混杂因素引起的后门路径。在推论阶段,我们消除了受欢迎程度的负面影响,并利用质量的良好效果进行推荐。在两个现实世界数据集上的实验验证了我们提出的框架的有效性,这在不牺牲建议准确性的情况下增强了公平性。
translated by 谷歌翻译
传统的推荐系统旨在根据观察到的群体的评级估算用户对物品的评级。与所有观察性研究一样,隐藏的混乱,这是影响物品曝光和用户评级的因素,导致估计系统偏差。因此,推荐制度研究的新趋势是否定混杂者对因果视角的影响。观察到建议中的混淆通常是在物品中共享的,因此是多原因混淆,我们将推荐模拟为多原因多结果(MCMO)推理问题。具体而言,为了解决混淆偏见,我们估计渲染项目曝光独立伯努利试验的用户特定的潜变量。生成分布由具有分解逻辑似然性的DNN参数化,并且通过变分推理估计难治性后续。控制这些因素作为替代混淆,在温和的假设下,可以消除多因素混淆所产生的偏差。此外,我们表明MCMO建模可能导致由于与高维因果空间相关的稀缺观察而导致高方差。幸运的是,我们理论上证明了作为预处理变量的推出用户特征可以大大提高样本效率并减轻过度装箱。模拟和现实世界数据集的实证研究表明,建议的深度因果额外推荐者比艺术最先进的因果推荐人员对未观察到的混乱更具稳健性。代码和数据集在https://github.com/yaochenzhu/deep-deconf发布。
translated by 谷歌翻译
建议制度,依靠历史观察数据来模仿用户和物品之间的复杂关系,取得了巨大的成功,在现实世界中取得了巨大的成功。选择偏见是现有的现有观测数据基于方法的最重要问题之一,其实际上是由多种类型的不观察室的暴露策略引起的(例如促销和假期效应)。虽然已经提出了各种方法来解决这个问题,但它们主要依赖于隐含的脱叠技术,但没有明确建立未观察的曝光策略。通过明确重建曝光策略(简称休息),我们将推荐问题正式化为反事实推理,并提出了脱叠的社会推荐方法。在休息时,我们假设项目的曝光由潜在曝光策略,用户和项目控制。基于上述生成过程,首先通过识别分析提供我们方法的理论保证。其次,在社交网络和项目的帮助下,我们采用了变分自动编码器来重建潜在的曝光策略。第三,我们通过利用回收的曝光策略制定基于反事实推理的建议算法。四个现实世界数据集的实验,包括三个已发布的数据集和一个私人微信官方帐户数据集,展示了几种最先进的方法的显着改进。
translated by 谷歌翻译
深度学习模型已经实现了患者电子健康记录(EHR)的有希望的疾病预测。但是,大多数模型在I.I.D.下开发了假设未能考虑不可知的分布变化,从而降低了深度学习模型到分布(OOD)数据的概括能力。在这种情况下,将利用可能在不同环境中发生变化的虚假统计相关性,这可能会导致深度学习模型的次优性能。训练分布中存在过程和诊断之间的不稳定相关性可能会导致历史EHR与未来诊断之间的虚假相关性。为了解决这个问题,我们建议使用一种称为因果医疗保健嵌入(CHE)的因果表示学习方法。 CHE旨在通过消除诊断和程序之间的依赖性来消除虚假的统计关系。我们介绍了希尔伯特 - 史密特独立标准(HSIC),以衡量嵌入式诊断和程序特征之间的独立性。基于因果观点分析,我们执行样本加权技术,以摆脱这种虚假关系,以跨不同环境对EHR进行稳定学习。此外,我们提出的CHE方法可以用作灵活的插件模块,可以增强EHR上现有的深度学习模型。在两个公共数据集和五个最先进的基线上进行了广泛的实验表明,CHE可以通过大幅度提高深度学习模型对分布数据的预测准确性。此外,可解释性研究表明,CHE可以成功利用因果结构来反映历史记录对预测的更合理贡献。
translated by 谷歌翻译
数据驱动的社会事件预测方法利用相关的历史信息来预测未来的事件。这些方法依赖于历史标记数据,并且当数据有限或质量差时无法准确地预测事件。研究事件之间的因果效应超出相关性分析,并且可以有助于更强大的事件预测。然而,由于若干因素,在数据驱动事件预测中纳入因果区分析是具有挑战性的:(i)事件发生在复杂和充满活力的社交环境中。许多未观察到的变量,即隐藏的混乱,影响潜在的原因和结果。 (ii)给予时尚非独立和相同分布的(非IID)数据,为准确的因果效应估计建模隐藏的混淆并不差。在这项工作中,我们介绍了一个深入的学习框架,将因果效应估计整合到事件预测中。我们首先研究了从时空属性的观察事件数据的单个治疗效果(ITE)估计的问题,并提出了一种新的因果推断模型来估计ites。然后,我们将学习的事件相关的因果信息纳入事件预测作为先验知识。引入了两个强大的学习模块,包括特征重载模块和近似约束损耗,以实现先验知识注入。我们通过将学习的因果信息送入不同的深度学习方法,评估了真实世界事件数据集的提出的因果推断模型,并验证了在事件预测中提出的强大学习模块的有效性。实验结果展示了社会事件中拟议的因果推断模型的强度,并展示了社会事件预测中强大的学习模块的有益特性。
translated by 谷歌翻译
因果关系的概念在人类认知中起着重要作用。在过去的几十年中,在许多领域(例如计算机科学,医学,经济学和教育)中,因果推论已经得到很好的发展。随着深度学习技术的发展,它越来越多地用于针对反事实数据的因果推断。通常,深层因果模型将协变量的特征映射到表示空间,然后设计各种客观优化函数,以根据不同的优化方法公正地估算反事实数据。本文重点介绍了深层因果模型的调查,其核心贡献如下:1)我们在多种疗法和连续剂量治疗下提供相关指标; 2)我们从时间开发和方法分类的角度综合了深层因果模型的全面概述; 3)我们协助有关相关数据集和源代码的详细且全面的分类和分析。
translated by 谷歌翻译
历史互动是推荐模型培训的默认选择,通常表现出高稀疏性,即大多数用户项目对都是未观察到的缺失数据。标准选择是将缺失的数据视为负训练样本,并估计用户项目对之间的相互作用以及观察到的相互作用。通过这种方式,在训练过程中不可避免地会误标记一些潜在的互动,这将损害模型的保真度,阻碍模型回忆起错误标签的项目,尤其是长尾尾。在这项工作中,我们从新的不确定性的新角度研究了标签的问题,该问题描述了缺失数据的固有随机性。随机性促使我们超越了相互作用的可能性,并接受了不确定性建模。为此,我们提出了一个新的不确定性不确定性建议(AUR)框架,该框架由新的不确定性估计器以及正常的推荐模型组成。根据核心不确定性理论,我们得出了一个新的建议目标来学习估计量。由于错误标签的机会反映了一对的潜力,因此AUR根据不确定性提出了建议,该建议被证明是为了改善较不受欢迎的项目的建议性能而不会牺牲整体性能。我们在三个代表性推荐模型上实例化AUR:来自主流模型体系结构的矩阵分解(MF),LightGCN和VAE。两个现实世界数据集的广泛结果验证了AUR W.R.T.的有效性。更好的建议结果,尤其是在长尾项目上。
translated by 谷歌翻译
这项工作研究了针对推荐系统的有偏见反馈中学习无偏算法的问题。我们从理论和算法的角度解决了这个问题。无偏学习的最新著作通过各种技术(例如元学习,知识蒸馏和信息瓶颈)推进了最新技术。尽管取得了经验成功,但大多数人缺乏理论保证,在理论和最近的算法之间形成了不可忽略的差距。为此,我们首先从分配转移的角度查看无偏见的推荐问题。我们理论上分析了公正学习的概括界限,并提出了它们与最近无偏学习目标的密切关系。基于理论分析,我们进一步提出了一个原则性的框架,对抗性自我训练(AST),以无偏见。对现实世界和半合成数据集的经验评估证明了拟议的AST的有效性。
translated by 谷歌翻译
向潜在客户展示广告而不是通常称为“增量”的因果效应是广告有效性的基本问题。在数字广告中,三个主要难题对于严格量化广告增量的核心:广告购买/竞标/定价,归因和实验。在机器学习和因果计量经济学基础的基础上,我们提出了一种方法,将这三个概念统一为竞标和归因的计算可行模型,该模型涵盖了广告效应的随机化,培训,交叉验证,评分,评分和转换归因。这种方法的实施很可能可以确保广告回报率的重大改善。
translated by 谷歌翻译
因果图作为因果建模的有效和强大的工具,通常被假定为有向的无环图(DAG)。但是,推荐系统通常涉及反馈循环,该反馈循环定义为推荐项目的循环过程,将用户反馈纳入模型更新以及重复该过程。结果,重要的是将循环纳入因果图中,以准确地对推荐系统进行动态和迭代数据生成过程。但是,反馈回路并不总是有益的,因为随着时间的流逝,它们可能会鼓励越来越狭窄的内容暴露,如果无人看管的话,可能会导致回声室。结果,重要的是要了解何时会导致Echo Chambers以及如何减轻回声室而不会损害建议性能。在本文中,我们设计了一个带有循环的因果图,以描述推荐的动态过程。然后,我们采取马尔可夫工艺来分析回声室的数学特性,例如导致回声腔的条件。受理论分析的启发,我们提出了一个动态的因果协作过滤($ \ partial $ ccf)模型,该模型估算了用户基于后门调整的项目的干预后偏好,并通过反事实推理减轻了Echo Echo Chamber。在现实世界数据集上进行了多个实验,结果表明,我们的框架可以比其他最先进的框架更好地减轻回声室,同时通过基本建议模型实现可比的建议性能。
translated by 谷歌翻译
因果推断能够估计治疗效果(即,治疗结果的因果效果),使各个领域的决策受益。本研究中的一个基本挑战是观察数据的治疗偏见。为了提高对因果推断的观察研究的有效性,基于代表的方法作为最先进的方法表明了治疗效果估计的卓越性能。基于大多数基于表示的方法假设所有观察到的协变量都是预处理的(即,不受治疗影响的影响),并学习这些观察到的协变量的平衡表示,以估算治疗效果。不幸的是,这种假设往往在实践中往往是太严格的要求,因为一些协调因子是通过对治疗的干预进行改变(即,后治疗)来改变。相比之下,从不变的协变量中学到的平衡表示因此偏置治疗效果估计。
translated by 谷歌翻译
鉴于部署更可靠的机器学习系统的重要性,研究界内的机器学习模型的解释性得到了相当大的关注。在计算机视觉应用中,生成反事实方法表示如何扰乱模型的输入来改变其预测,提供有关模型决策的详细信息。目前的方法倾向于产生关于模型决策的琐碎的反事实,因为它们通常建议夸大或消除所分类的属性的存在。对于机器学习从业者,这些类型的反事件提供了很少的价值,因为它们没有提供有关不期望的模型或数据偏差的新信息。在这项工作中,我们确定了琐碎的反事实生成问题,我们建议潜水以缓解它。潜水在使用多样性强制损失限制的解除印章潜在空间中学习扰动,以发现关于模型预测的多个有价值的解释。此外,我们介绍一种机制,以防止模型产生微不足道的解释。 Celeba和Synbols的实验表明,与先前的最先进的方法相比,我们的模型提高了生产高质量有价值解释的成功率。代码可在https://github.com/elementai/beyond- trial-explanations获得。
translated by 谷歌翻译
隐式反馈已被广泛用于构建商业推荐系统。由于观察到的反馈代表用户的点击日志,因此真实相关性和观察到的反馈之间存在语义差距。更重要的是,观察到的反馈通常偏向流行项目,从而高估了流行项目的实际相关性。尽管现有的研究使用反向倾向加权(IPW)或因果推理开发了公正的学习方法,但它们仅专注于消除项目的流行偏见。在本文中,我们提出了一种新颖的无偏建议学习模型,即双边自我非偏置推荐剂(Biser),以消除推荐模型引起的项目的暴露偏见。具体而言,双方由两个关键组成部分组成:(i)自我内向倾向加权(SIPW)逐渐减轻项目的偏见而不会产生高计算成本; (ii)双边无偏学习(BU),以弥合模型预测中两个互补模型之间的差距,即基于用户和项目的自动编码器,从而减轻了SIPW的较高差异。广泛的实验表明,Biser在几个数据集上始终优于最先进的无偏建议型号,包括外套,Yahoo! R3,Movielens和Citeulike。
translated by 谷歌翻译
鉴于大规模系统的输出度量的意外变化,重要的是要回答发生变化的原因很重要:哪些输入导致了度量的变化?此类归因问题的一个关键组成部分是估计反事实:由于单个输入的指定变化,系统度量的(假设)变化。但是,由于系统部分之间的固有随机性和复杂的相互作用,很难直接对输出度量进行建模。我们利用系统的计算结构将建模任务分解为子部分,因此每个子部分对应于一个更稳定的机制,可以随着时间的推移准确地对其进行准确的建模。使用系统的结构还有助于将指标视为结构性因果模型(SCM)的计算,从而提供了一种原则上的估计反事实的方式。具体而言,我们提出了一种使用时间序列预测模型估算反事实的方法,并构建归因得分CF-Shapley,这与理想的公理一致,以归因于观察到的输出度量的变化。与过去关于因果沙普利值的工作不同,我们提出的方法可以归因于观察到的单个输出变化(而不是人口级效应),因此在模拟数据集上评估时提供了更准确的归因分数。作为现实世界应用,我们分析了一个查询AD匹配系统,其目的是归因于AD匹配密度的度量标准的观察到的变化。归因分数解释了来自不同查询类别的查询量和广告需求如何影响AD匹配密度,从而导致可行的见解,并发现外部事件(例如“ Cheetah Day”)在推动匹配密度中的作用(例如“ Cheetah Day”)。
translated by 谷歌翻译
Unbiased learning to rank (ULTR) studies the problem of mitigating various biases from implicit user feedback data such as clicks, and has been receiving considerable attention recently. A popular ULTR approach for real-world applications uses a two-tower architecture, where click modeling is factorized into a relevance tower with regular input features, and a bias tower with bias-relevant inputs such as the position of a document. A successful factorization will allow the relevance tower to be exempt from biases. In this work, we identify a critical issue that existing ULTR methods ignored - the bias tower can be confounded with the relevance tower via the underlying true relevance. In particular, the positions were determined by the logging policy, i.e., the previous production model, which would possess relevance information. We give both theoretical analysis and empirical results to show the negative effects on relevance tower due to such a correlation. We then propose three methods to mitigate the negative confounding effects by better disentangling relevance and bias. Empirical results on both controlled public datasets and a large-scale industry dataset show the effectiveness of the proposed approaches.
translated by 谷歌翻译
一个良好的动作效果预测模型,称为环境模型,对于在机器人控制,推荐系统和患者治疗选择等许多领域中实现样本有效的决策政策学习非常重要。我们可以使用这种模型进行无限的试验来确定适当的行动,以便可以节省现实世界中的查询成本。它要求模型正确处理看不见的数据,也称为反事实数据。但是,标准数据拟合技术不会自动实现这种概括能力,通常会导致不可靠的模型。在这项工作中,我们在模型学习中引入了反事实风险最小化(CQRM),以推广到特定目标策略查询的反事实数据集。由于目标策略在政策学习中可能是各种各样且未知的,因此我们提出了一个对抗性CQRM目标,其中模型在对抗性策略查询的反事实数据上学习,并最终得出可拖延的解决方案Galileo。我们还发现,对抗性CQRM与对抗模型学习密切相关,从而解释了后者的有效性。我们将伽利略应用于综合任务和现实应用程序中。结果表明,伽利略对反事实数据做出了准确的预测,从而显着改善了现实世界测试的策略。
translated by 谷歌翻译
Causal inference is the process of using assumptions, study designs, and estimation strategies to draw conclusions about the causal relationships between variables based on data. This allows researchers to better understand the underlying mechanisms at work in complex systems and make more informed decisions. In many settings, we may not fully observe all the confounders that affect both the treatment and outcome variables, complicating the estimation of causal effects. To address this problem, a growing literature in both causal inference and machine learning proposes to use Instrumental Variables (IV). This paper serves as the first effort to systematically and comprehensively introduce and discuss the IV methods and their applications in both causal inference and machine learning. First, we provide the formal definition of IVs and discuss the identification problem of IV regression methods under different assumptions. Second, we categorize the existing work on IV methods into three streams according to the focus on the proposed methods, including two-stage least squares with IVs, control function with IVs, and evaluation of IVs. For each stream, we present both the classical causal inference methods, and recent developments in the machine learning literature. Then, we introduce a variety of applications of IV methods in real-world scenarios and provide a summary of the available datasets and algorithms. Finally, we summarize the literature, discuss the open problems and suggest promising future research directions for IV methods and their applications. We also develop a toolkit of IVs methods reviewed in this survey at https://github.com/causal-machine-learning-lab/mliv.
translated by 谷歌翻译
在推荐系统中,一个普遍的挑战是冷门问题,在系统中,相互作用非常有限。为了应对这一挑战,最近,许多作品将元优化的想法介绍到建议方案中,即学习仅通过过去的几个交互项目来学习用户偏好。核心想法是为所有用户学习全局共享的元启动参数,并分别为每个用户迅速调整其本地参数。他们的目的是在各种用户的偏好学习中得出一般知识,以便通过博学的先验和少量培训数据迅速适应未来的新用户。但是,以前的作品表明,推荐系统通常容易受到偏见和不公平的影响。尽管元学习成功地通过冷启动提高了推荐性能,但公平性问题在很大程度上被忽略了。在本文中,我们提出了一个名为Clover的全面的公平元学习框架,以确保元学习的推荐模型的公平性。我们系统地研究了三种公平性 - 个人公平,反事实公平和推荐系统中的群体公平,并建议通过多任务对抗学习方案满足所有三种类型。我们的框架提供了一种通用的培训范式,适用于不同的元学习推荐系统。我们证明了三叶草对三个现实世界数据集的代表性元学习用户偏好估计器的有效性。经验结果表明,三叶草可以实现全面的公平性,而不会恶化整体的冷淡建议性能。
translated by 谷歌翻译