隐式反馈已被广泛用于构建商业推荐系统。由于观察到的反馈代表用户的点击日志,因此真实相关性和观察到的反馈之间存在语义差距。更重要的是,观察到的反馈通常偏向流行项目,从而高估了流行项目的实际相关性。尽管现有的研究使用反向倾向加权(IPW)或因果推理开发了公正的学习方法,但它们仅专注于消除项目的流行偏见。在本文中,我们提出了一种新颖的无偏建议学习模型,即双边自我非偏置推荐剂(Biser),以消除推荐模型引起的项目的暴露偏见。具体而言,双方由两个关键组成部分组成:(i)自我内向倾向加权(SIPW)逐渐减轻项目的偏见而不会产生高计算成本; (ii)双边无偏学习(BU),以弥合模型预测中两个互补模型之间的差距,即基于用户和项目的自动编码器,从而减轻了SIPW的较高差异。广泛的实验表明,Biser在几个数据集上始终优于最先进的无偏建议型号,包括外套,Yahoo! R3,Movielens和Citeulike。
translated by 谷歌翻译
历史互动是推荐模型培训的默认选择,通常表现出高稀疏性,即大多数用户项目对都是未观察到的缺失数据。标准选择是将缺失的数据视为负训练样本,并估计用户项目对之间的相互作用以及观察到的相互作用。通过这种方式,在训练过程中不可避免地会误标记一些潜在的互动,这将损害模型的保真度,阻碍模型回忆起错误标签的项目,尤其是长尾尾。在这项工作中,我们从新的不确定性的新角度研究了标签的问题,该问题描述了缺失数据的固有随机性。随机性促使我们超越了相互作用的可能性,并接受了不确定性建模。为此,我们提出了一个新的不确定性不确定性建议(AUR)框架,该框架由新的不确定性估计器以及正常的推荐模型组成。根据核心不确定性理论,我们得出了一个新的建议目标来学习估计量。由于错误标签的机会反映了一对的潜力,因此AUR根据不确定性提出了建议,该建议被证明是为了改善较不受欢迎的项目的建议性能而不会牺牲整体性能。我们在三个代表性推荐模型上实例化AUR:来自主流模型体系结构的矩阵分解(MF),LightGCN和VAE。两个现实世界数据集的广泛结果验证了AUR W.R.T.的有效性。更好的建议结果,尤其是在长尾项目上。
translated by 谷歌翻译
传统的推荐系统旨在根据观察到的群体的评级估算用户对物品的评级。与所有观察性研究一样,隐藏的混乱,这是影响物品曝光和用户评级的因素,导致估计系统偏差。因此,推荐制度研究的新趋势是否定混杂者对因果视角的影响。观察到建议中的混淆通常是在物品中共享的,因此是多原因混淆,我们将推荐模拟为多原因多结果(MCMO)推理问题。具体而言,为了解决混淆偏见,我们估计渲染项目曝光独立伯努利试验的用户特定的潜变量。生成分布由具有分解逻辑似然性的DNN参数化,并且通过变分推理估计难治性后续。控制这些因素作为替代混淆,在温和的假设下,可以消除多因素混淆所产生的偏差。此外,我们表明MCMO建模可能导致由于与高维因果空间相关的稀缺观察而导致高方差。幸运的是,我们理论上证明了作为预处理变量的推出用户特征可以大大提高样本效率并减轻过度装箱。模拟和现实世界数据集的实证研究表明,建议的深度因果额外推荐者比艺术最先进的因果推荐人员对未观察到的混乱更具稳健性。代码和数据集在https://github.com/yaochenzhu/deep-deconf发布。
translated by 谷歌翻译
Decias的推荐模型最近引起了学术和行业社区的越来越多的关注。现有模型主要基于反向倾向得分(IPS)的技术。但是,在建议域中,鉴于观察到的用户项目暴露数据的稀疏性质和嘈杂性,IP很难估算。为了缓解这个问题,在本文中,我们假设用户偏好可以由少量潜在因素主导,并建议通过增加曝光密度来集群用户以计算更准确的IPS。基本上,这种方法与应用统计的分层模型的精神相似。但是,与以前的启发式分层策略不同,我们通过向用户呈现低级嵌入的用户来学习群集标准,这是建议模型中的用户表示未来。最后,我们发现我们的模型与前两种类型的Debias推荐模型有牢固的联系。我们基于实际数据集进行了广泛的实验,以证明该方法的有效性。
translated by 谷歌翻译
这项工作研究了针对推荐系统的有偏见反馈中学习无偏算法的问题。我们从理论和算法的角度解决了这个问题。无偏学习的最新著作通过各种技术(例如元学习,知识蒸馏和信息瓶颈)推进了最新技术。尽管取得了经验成功,但大多数人缺乏理论保证,在理论和最近的算法之间形成了不可忽略的差距。为此,我们首先从分配转移的角度查看无偏见的推荐问题。我们理论上分析了公正学习的概括界限,并提出了它们与最近无偏学习目标的密切关系。基于理论分析,我们进一步提出了一个原则性的框架,对抗性自我训练(AST),以无偏见。对现实世界和半合成数据集的经验评估证明了拟议的AST的有效性。
translated by 谷歌翻译
单击后键盘转换为指示用户偏好的强信号,是构建推荐系统的良性。但是,由于选择偏差,即,观察到的单击事件通常会发生在用户的首选项目,准确地估计点击后击率(CVR)是具有挑战性的。目前,大多数现有方法利用反事实学习到Debias推荐系统。其中,双重稳健(DR)估计器通过以双重稳健的方式组合基于误差估算的(EIB)估计和逆倾向分数(IPS)估计来实现竞争性能。然而,不准确的误差估算可能导致其比IPS估计器更高的方差。更糟糕的是,现有方法通常使用简单的模型 - 不可知方法来估计归纳错误,这不足以近似于近似于动态改变的模型相关目标(即预测模型的梯度方向)。为了解决这些问题,我们首先导出DR估算器的偏差和方差。基于它,已经提出了一种更强大的双重稳健(MRDR)估计器,以进一步降低其差异,同时保持其双重稳健性。此外,我们为MRDR估算器提出了一种新的双重学习方法,可以将误差归纳转换为一般的CVR估计。此外,我们经验验证所提出的学习方案可以进一步消除估算学习的高方差问题。为了评估其有效性,在半合成数据集和两个现实世界数据集上进行了广泛的实验。结果证明了所提出的方法的优越性在最先进的方法中。代码可在https://github.com/guosyjlu/mrdr-dl上获得。
translated by 谷歌翻译
推荐系统在塑造现代网络生态系统中起关键作用。这些系统在(1)提出建议之间交替(2)收集用户对这些建议的响应,以及(3)根据此反馈重新审判建议算法。在此过程中,推荐系统会影响随后用于更新它的用户行为数据,从而创建反馈循环。最近的工作表明,反馈循环可能会损害建议质量并使用户行为均匀,从而在部署推荐系统时提高道德和绩效问题。为了解决这些问题,我们提出了反馈循环(CAFL)的因果调整,该算法可证明使用因果推理打破反馈回路,并可以应用于优化培训损失的任何建议算法。我们的主要观察结果是,如果原因是因果量的原因,即推荐系统不会遭受反馈循环的影响,即对用户评级的建议分布。此外,我们可以通过调整推荐系统对用户偏好的预测来计算从观察数据中计算此干预分布。使用模拟环境,我们证明CAFL与先前的校正方法相比提高了建议质量。
translated by 谷歌翻译
推荐系统通常会从各种用户行为中学习用户兴趣,包括点击和点击后行为(例如,喜欢和喜欢)。但是,这些行为不可避免地表现出受欢迎程度的偏见,从而导致一些不公平的问题:1)对于具有相似质量,更受欢迎的物品的物品会获得更多的曝光; 2)更糟糕的是,受欢迎程度较低的流行物品可能会获得更多的曝光率。现有关于缓解流行偏见的工作会盲目消除偏见,通常忽略项目质量的影响。我们认为,不同用户行为(例如,转换率)之间的关系实际上反映了项目质量。因此,为了处理不公平的问题,我们建议通过考虑多种用户行为来减轻流行性偏见。在这项工作中,我们研究了多行为推荐中相互作用生成过程背后的因果关系。具体来说,我们发现:1)项目受欢迎程度是暴露的项目和用户的点击交互之间的混杂因素,导致第一个不公平; 2)一些隐藏的混杂因素(例如,项目生产者的声誉)影响了项目的流行和质量,导致第二次不公平。为了减轻这些混杂问题,我们提出了一个因果框架来估计因果效应,该因果效应利用后门调整以阻止混杂因素引起的后门路径。在推论阶段,我们消除了受欢迎程度的负面影响,并利用质量的良好效果进行推荐。在两个现实世界数据集上的实验验证了我们提出的框架的有效性,这在不牺牲建议准确性的情况下增强了公平性。
translated by 谷歌翻译
隐式反馈的无处不是建立推荐系统不可或缺的反馈。但是,它实际上并没有反映用户的实际满意度。例如,在电子商务中,一大部分点击不转化为购买,许多购买结束了否定审查。因此,考虑隐性反馈中的不可避免的噪声是重要的。但是,建议的一点工作已经考虑了隐性反馈的嘈杂性。在这项工作中,我们探讨了向建议学习的识别隐含反馈的中心主题,包括培训和推论。通过观察正常推荐培训的过程,我们发现嘈杂的反馈通常在早期阶段中具有大的损失值。灵感来自这一观察,我们提出了一种新的培训策略,称为自适应去噪培训(ADT),其自适应地修剪了两个范式的嘈杂相互作用(即截断损失和重新减免)。此外,我们考虑额外的反馈(例如,评级)作为辅助信号,提出三种策略,将额外的反馈纳入ADT:FineTuning,预热训练和碰撞推断。我们在广泛使用的二进制交叉熵丢失上实例化了两个范式,并在三个代表推荐模型上测试它们。在三个基准测试中的广泛实验表明ADT在不使用额外反馈的情况下显着提高了正常培训的建议质量。此外,提出的三种策略用于使用额外反馈的主要原因是增强ADT的去噪能力。
translated by 谷歌翻译
In this paper, we study item advertisements for small businesses. This application recommends prospective customers to specific items requested by businesses. From analysis, we found that the existing Recommender Systems (RS) were ineffective for small/new businesses with a few sales history. Training samples in RS can be highly biased toward popular businesses with sufficient sales and can decrease advertising performance for small businesses. We propose a meta-learning-based RS to improve advertising performance for small/new businesses and shops: Meta-Shop. Meta-Shop leverages an advanced meta-learning optimization framework and builds a model for a shop-level recommendation. It also integrates and transfers knowledge between large and small shops, consequently learning better features in small shops. We conducted experiments on a real-world E-commerce dataset and a public benchmark dataset. Meta-Shop outperformed a production baseline and the state-of-the-art RS models. Specifically, it achieved up to 16.6% relative improvement of Recall@1M and 40.4% relative improvement of nDCG@3 for user recommendations to new shops compared to the other RS models.
translated by 谷歌翻译
在推荐系统中,一个普遍的挑战是冷门问题,在系统中,相互作用非常有限。为了应对这一挑战,最近,许多作品将元优化的想法介绍到建议方案中,即学习仅通过过去的几个交互项目来学习用户偏好。核心想法是为所有用户学习全局共享的元启动参数,并分别为每个用户迅速调整其本地参数。他们的目的是在各种用户的偏好学习中得出一般知识,以便通过博学的先验和少量培训数据迅速适应未来的新用户。但是,以前的作品表明,推荐系统通常容易受到偏见和不公平的影响。尽管元学习成功地通过冷启动提高了推荐性能,但公平性问题在很大程度上被忽略了。在本文中,我们提出了一个名为Clover的全面的公平元学习框架,以确保元学习的推荐模型的公平性。我们系统地研究了三种公平性 - 个人公平,反事实公平和推荐系统中的群体公平,并建议通过多任务对抗学习方案满足所有三种类型。我们的框架提供了一种通用的培训范式,适用于不同的元学习推荐系统。我们证明了三叶草对三个现实世界数据集的代表性元学习用户偏好估计器的有效性。经验结果表明,三叶草可以实现全面的公平性,而不会恶化整体的冷淡建议性能。
translated by 谷歌翻译
随着深度学习技术扩展到现实世界推荐任务,已经开发出许多深度神经网络的协作滤波(CF)模型基于各种神经结构,例如多层的神经架构将用户项目交互项目投影到潜伏特征空间中Perceptron,自动编码器和图形神经网络。然而,大多数现有的协作过滤系统不充分设计用于处理缺失的数据。特别是,为了在训练阶段注入负信号,这些解决方案很大程度上依赖于未观察到的用户项交互,并且简单地将它们视为负实例,这带来了推荐性能下降。为了解决问题,我们开发了一个协作反射增强的AutoEncoder网络(Cranet),它能够探索从观察到和未观察的用户项交互的可转移知识。 Cranet的网络架构由具有反射接收器网络的集成结构和信息融合自动统计器模块形成,其推荐框架具有在互动和非互动项目上编码隐式用户的成对偏好的能力。另外,基于参数正规化的捆绑重量方案旨在对两级颅骨模型进行鲁棒联合训练。我们终于在对应于两个推荐任务的四个不同基准数据集上进行了实验验证了Cranet,以表明,与各种最先进的推荐技术相比,脱叠用户项交互的负信号提高了性能。我们的源代码可在https://github.com/akaxlh/cranet上获得。
translated by 谷歌翻译
在隐性反馈推荐中,将短期偏好纳入推荐系统近年来引起了不断的关注。但是,在历史交互中的意外行为,如偶然点击一些物品,也不能反映用户固有的偏好。现有研究未能模拟意外行为的影响,从而实现劣等的推荐性能。在本文中,我们提出了一种多偏好模型(MPM)来消除意外行为的影响。 MPM首先通过细粒度的偏好模块从最近的历史交互中提取用户的即时偏好。然后,培训意外行为检测器以判断这些即时偏好是否由意外行为偏置。我们还将用户的一般偏好集成在MPM中。最后,执行输出模块以消除意外行为的影响,并集成所有信息以进行最终推荐。我们在电影的两个数据集和电子零售中进行广泛的实验,展示了我们在最先进的方法上的模型的显着改进。实验结果表明,MPM在HR @ 10和NDCG @ 10中获得了大规模的改善,平均与斯trec模型相比相对增加了3.643%和4.107%。我们在https://github.com/chenjie04/mpm/发布我们的代码。
translated by 谷歌翻译
因果图作为因果建模的有效和强大的工具,通常被假定为有向的无环图(DAG)。但是,推荐系统通常涉及反馈循环,该反馈循环定义为推荐项目的循环过程,将用户反馈纳入模型更新以及重复该过程。结果,重要的是将循环纳入因果图中,以准确地对推荐系统进行动态和迭代数据生成过程。但是,反馈回路并不总是有益的,因为随着时间的流逝,它们可能会鼓励越来越狭窄的内容暴露,如果无人看管的话,可能会导致回声室。结果,重要的是要了解何时会导致Echo Chambers以及如何减轻回声室而不会损害建议性能。在本文中,我们设计了一个带有循环的因果图,以描述推荐的动态过程。然后,我们采取马尔可夫工艺来分析回声室的数学特性,例如导致回声腔的条件。受理论分析的启发,我们提出了一个动态的因果协作过滤($ \ partial $ ccf)模型,该模型估算了用户基于后门调整的项目的干预后偏好,并通过反事实推理减轻了Echo Echo Chamber。在现实世界数据集上进行了多个实验,结果表明,我们的框架可以比其他最先进的框架更好地减轻回声室,同时通过基本建议模型实现可比的建议性能。
translated by 谷歌翻译
隐式反馈经常用于开发个性化的推荐服务,因为其无处不在和现实世界中的可访问性。为了有效地利用此类信息,大多数研究都采用成对排名方法对构建的培训三胞胎(用户,正面项目,负项目),并旨在区分每个用户的正面项目和负面项目。但是,这些方法中的大多数都同样对待所有训练三胞胎,这忽略了不同的正或负项目之间的微妙差异。另一方面,即使其他一些作品利用用户行为的辅助信息(例如,停留时间)来捕获这种微妙的差异,但很难获得这样的辅助信息。为了减轻上述问题,我们提出了一个名为Triplet重要性学习(TIL)的新型培训框架,该框架可以自适应地学习训练三胞胎的重要性得分。我们为重要性得分生成的两种策略设计了两种策略,并将整个过程作为双层优化,这不需要任何基于规则的设计。我们将提出的训练程序与基于图形神经网络(GNN)基于图形的推荐模型的几个矩阵分解(MF)集成在一起,证明了我们的框架的兼容性。通过使用与许多最先进方法的三个现实世界数据集进行比较,我们表明我们所提出的方法在top-k推荐方面的召回@k方面优于3-21 \%的最佳现有模型。
translated by 谷歌翻译
In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation -collaborative filtering -on the basis of implicit feedback.Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering -the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items.By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural networkbased Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.
translated by 谷歌翻译
推荐系统的目标是通过用户项目的交互历史记录对每个用户和每个项目之间的相关性进行建模,以便最大程度地提高样本得分并最大程度地减少负面样本。当前,两个流行的损失功能被广泛用于优化推荐系统:点心和成对。尽管这些损失功能被广泛使用,但是有两个问题。 (1)这些传统损失功能不适合推荐系统的目标,并充分利用了先验知识信息。 (2)这些传统损失功能的缓慢收敛速度使各种建议模型的实际应用变得困难。为了解决这些问题,我们根据先验知识提出了一个名为“监督个性化排名”(SPR)的新型损失函数。提出的方法通过利用原始数据中每个用户或项目的相互作用历史记录的先验知识来改善BPR损失。与BPR不同,而不是构建<用户,正面项目,负面项目>三元组,而是拟议的SPR构造<用户,相似的用户,正面项目,负面项目,否定项目> Quadruples。尽管SPR非常简单,但非常有效。广泛的实验表明,我们提出的SPR不仅取得了更好的建议性能,而且还可以显着加速收敛速度,从而大大减少所需的训练时间。
translated by 谷歌翻译
在推荐系统中,一个常见的问题是收集到的数据中存在各种偏见,这会恶化推荐模型的概括能力,并导致预测不准确。在RS的许多任务中都研究了双重鲁棒(DR)学习,其优势是,当单个插补或单个倾向模型准确时,可以实现公正的学习。在本文中,我们提出了一个多重鲁棒(MR)估计量,该估计量可以利用多个候选的插补和倾向模型来实现无偏见。具体而言,当任何插补或倾向模型或这些模型的线性组合都是准确的时,MR估计器是公正的。理论分析表明,提出的MR是仅具有单个插补和倾向模型的DR的增强版本,并且具有较小的偏见。受到MR的概括误差的启发,我们进一步提出了一种新型的多重健壮学习方法,并稳定。我们对现实世界和半合成数据集进行了广泛的实验,这些实验证明了所提出的方法比最先进的方法的优越性。
translated by 谷歌翻译
最近,在推荐系统领域中,一个关键问题隐约可见 - 没有进行严格评估的有效基准 - 因此,这会导致不可再生的评估和不公平的比较。因此,我们从实践理论和实验的角度进行研究,目的是为严格的评估做出基准建议。关于理论研究,一系列影响整个评估链中建议性能的超级因素通过对2017 - 2020年在八个顶级会议上发表的141篇论文进行的详尽评价进行了系统的总结和分析。然后,我们将它们分类为独立于模型和模型依赖性的超因子,并相应地定义和讨论了不同的严格评估模式。在实验研究中,我们通过将这些超级因子整合以进行严格的评估来发布DaisyREC 2.0文库,从而进行了整体经验研究,以揭示不同超级效应器对建议性能的影响。在理论和实验研究的支持下,我们最终通过提出标准化程序并在六个数据集上的六个评估指标中提供10个最先进的方法来创建严格评估的基准,以作为以后研究的参考。总体而言,我们的工作阐明了建议评估中的问题,为严格的评估提供了潜在的解决方案,并为进一步调查提供了基础。
translated by 谷歌翻译
协作过滤问题通常是基于矩阵完成技术来解决的,该技术恢复了用户项目交互矩阵的缺失值。在矩阵中,额定位置专门表示给定的用户和额定值。以前的矩阵完成技术倾向于忽略矩阵中每个元素(用户,项目和评分)的位置,但主要关注用户和项目之间的语义相似性,以预测矩阵中缺少的值。本文提出了一种新颖的位置增强的用户/项目表示培训模型,用于推荐,Super-Rec。我们首先使用相对位置评级编码并存储位置增强的额定信息及其用户项目与嵌入的固定尺寸,而不会受矩阵大小影响。然后,我们将受过训练的位置增强用户和项目表示形式应用于最简单的传统机器学习模型,以突出我们表示模型的纯粹新颖性。我们对建议域中的位置增强项目表示形式进行了首次正式介绍和定量分析,并对我们的Super-Rec进行了原则性的讨论,以表现优于典型的协作过滤推荐任务,并具有明确的和隐式反馈。
translated by 谷歌翻译