对性别或种族偏见等偏见的研究是社会和行为科学中的重要话题。但是,文献中并不总是清楚地定义偏见的概念。偏见的定义通常是模棱两可的,或者根本不提供定义。要精确研究偏见,重要的是要有明确的偏见概念。我们建议将偏见定义为不合理的直接因果效应。我们建议将差异密切相关的概念定义为包括偏见的直接或间接因果效应。我们提出的定义可用于以更严格和系统的方式研究偏见和差异。我们将对偏见和差异的定义与人工智能文献中引入的各种公平定义进行了比较。我们还在两个案例研究中说明了我们的定义,重点是警察枪击案中的科学和种族偏见。我们提出的定义旨在更好地欣赏偏见和差异研究的因果关系。希望这也会导致人们对此类研究的政策含义有了深刻的了解。
translated by 谷歌翻译
Machine learning can impact people with legal or ethical consequences when it is used to automate decisions in areas such as insurance, lending, hiring, and predictive policing. In many of these scenarios, previous decisions have been made that are unfairly biased against certain subpopulations, for example those of a particular race, gender, or sexual orientation. Since this past data may be biased, machine learning predictors must account for this to avoid perpetuating or creating discriminatory practices. In this paper, we develop a framework for modeling fairness using tools from causal inference. Our definition of counterfactual fairness captures the intuition that a decision is fair towards an individual if it is the same in (a) the actual world and (b) a counterfactual world where the individual belonged to a different demographic group. We demonstrate our framework on a real-world problem of fair prediction of success in law school. * Equal contribution. This work was done while JL was a Research Fellow at the Alan Turing Institute. 2 https://obamawhitehouse.archives.gov/blog/2016/05/04/big-risks-big-opportunities-intersection-big-dataand-civil-rights 31st Conference on Neural Information Processing Systems (NIPS 2017),
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
近年来,解决机器学习公平性(ML)和自动决策的问题引起了处理人工智能的科学社区的大量关注。已经提出了ML中的公平定义的一种不同的定义,认为不同概念是影响人口中个人的“公平决定”的不同概念。这些概念之间的精确差异,含义和“正交性”尚未在文献中完全分析。在这项工作中,我们试图在这个解释中汲取一些订单。
translated by 谷歌翻译
因果推理在人类如何理解世界并在日常生活中做出决策中具有必不可少的作用。虽然20美元的$ Century Science是因为使因果的主张过于强大且无法实现,但第21美元的$ Century是由因果关系的数学化和引入非确定性原因概念的因果关系的重返标志的。 \ cite {illari2011look}。除了其流行病学,政治和社会科学方面的常见用例外,因果关系对于在法律和日常意义上评估自动决定的公平性至关重要。我们提供了为什么因果关系对于公平评估特别重要的论点和例子。特别是,我们指出了非因果预测的社会影响以及依赖因果主张的法律反歧视过程。最后,我们讨论了在实际情况以及可能的解决方案中应用因果关系的挑战和局限性。
translated by 谷歌翻译
公平性是确保机器学习(ML)预测系统不会歧视特定个人或整个子人群(尤其是少数族裔)的重要要求。鉴于观察公平概念的固有主观性,文献中已经引入了几种公平概念。本文是一项调查,说明了通过大量示例和场景之间的公平概念之间的微妙之处。此外,与文献中的其他调查不同,它解决了以下问题:哪种公平概念最适合给定的现实世界情景,为什么?我们试图回答这个问题的尝试包括(1)确定手头现实世界情景的一组与公平相关的特征,(2)分析每个公平概念的行为,然后(3)适合这两个元素以推荐每个特定设置中最合适的公平概念。结果总结在决策图中可以由从业者和政策制定者使用,以导航相对较大的ML目录。
translated by 谷歌翻译
This review presents empirical researchers with recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
translated by 谷歌翻译
Advocates of algorithmic techniques like data mining argue that these techniques eliminate human biases from the decision-making process. But an algorithm is only as good as the data it works with. Data is frequently imperfect in ways that allow these algorithms to inherit the prejudices of prior decision makers. In other cases, data may simply reflect the widespread biases that persist in society at large. In still others, data mining can discover surprisingly useful regularities that are really just preexisting patterns of exclusion and inequality. Unthinking reliance on data mining can deny historically disadvantaged and vulnerable groups full participation in society. Worse still, because the resulting discrimination is almost always an unintentional emergent property of the algorithm's use rather than a conscious choice by its programmers, it can be unusually hard to identify the source of the problem or to explain it to a court. This Essay examines these concerns through the lens of American antidiscrimination law-more particularly, through Title
translated by 谷歌翻译
算法公平吸引了机器学习社区越来越多的关注。文献中提出了各种定义,但是它们之间的差异和联系并未清楚地解决。在本文中,我们回顾并反思了机器学习文献中先前提出的各种公平概念,并试图与道德和政治哲学,尤其是正义理论的论点建立联系。我们还从动态的角度考虑了公平的询问,并进一步考虑了当前预测和决策引起的长期影响。鉴于特征公平性的差异,我们提出了一个流程图,该流程图包括对数据生成过程,预测结果和诱导的影响的不同类型的公平询问的隐式假设和预期结果。本文展示了与任务相匹配的重要性(人们希望执行哪种公平性)和实现预期目的的手段(公平分析的范围是什么,什么是适当的分析计划)。
translated by 谷歌翻译
Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 150 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to specific research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent, and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner.
translated by 谷歌翻译
A significant body of research in the data sciences considers unfair discrimination against social categories such as race or gender that could occur or be amplified as a result of algorithmic decisions. Simultaneously, real-world disparities continue to exist, even before algorithmic decisions are made. In this work, we draw on insights from the social sciences brought into the realm of causal modeling and constrained optimization, and develop a novel algorithmic framework for tackling pre-existing real-world disparities. The purpose of our framework, which we call the "impact remediation framework," is to measure real-world disparities and discover the optimal intervention policies that could help improve equity or access to opportunity for those who are underserved with respect to an outcome of interest. We develop a disaggregated approach to tackling pre-existing disparities that relaxes the typical set of assumptions required for the use of social categories in structural causal models. Our approach flexibly incorporates counterfactuals and is compatible with various ontological assumptions about the nature of social categories. We demonstrate impact remediation with a hypothetical case study and compare our disaggregated approach to an existing state-of-the-art approach, comparing its structure and resulting policy recommendations. In contrast to most work on optimal policy learning, we explore disparity reduction itself as an objective, explicitly focusing the power of algorithms on reducing inequality.
translated by 谷歌翻译
解决公平问题对于安全使用机器学习算法来支持对人们的生活产生关键影响的决策,例如雇用工作,儿童虐待,疾病诊断,贷款授予等。过去十年,例如统计奇偶校验和均衡的赔率。然而,最新的公平概念是基于因果关系的,反映了现在广泛接受的想法,即使用因果关系对于适当解决公平问题是必要的。本文研究了基于因果关系的公平概念的详尽清单,并研究了其在现实情况下的适用性。由于大多数基于因果关系的公平概念都是根据不可观察的数量(例如干预措施和反事实)来定义的,因此它们在实践中的部署需要使用观察数据来计算或估计这些数量。本文提供了有关从观察数据(包括可识别性(Pearl的SCM框架))和估计(潜在结果框架)中推断出因果量的不同方法的全面报告。该调查论文的主要贡献是(1)指南,旨在在特定的现实情况下帮助选择合适的公平概念,以及(2)根据Pearl的因果关系阶梯的公平概念的排名,表明它很难部署。实践中的每个概念。
translated by 谷歌翻译
业务分析(BA)的广泛采用带来了财务收益和提高效率。但是,当BA以公正的影响为决定时,这些进步同时引起了人们对法律和道德挑战的不断增加。作为对这些关注的回应,对算法公平性的新兴研究涉及算法输出,这些算法可能会导致不同的结果或其他形式的对人群亚组的不公正现象,尤其是那些在历史上被边缘化的人。公平性是根据法律合规,社会责任和效用是相关的;如果不充分和系统地解决,不公平的BA系统可能会导致社会危害,也可能威胁到组织自己的生存,其竞争力和整体绩效。本文提供了有关算法公平的前瞻性,注重BA的评论。我们首先回顾有关偏见来源和措施的最新研究以及偏见缓解算法。然后,我们对公用事业关系的详细讨论进行了详细的讨论,强调经常假设这两种构造之间经常是错误的或短视的。最后,我们通过确定企业学者解决有效和负责任的BA的关键的有影响力的公开挑战的机会来绘制前进的道路。
translated by 谷歌翻译
因果关系是理解世界的科学努力的基本组成部分。不幸的是,在心理学和社会科学中,因果关系仍然是禁忌。由于越来越多的建议采用因果方法进行研究的重要性,我们重新制定了心理学研究方法的典型方法,以使不可避免的因果理论与其余的研究渠道协调。我们提出了一个新的过程,该过程始于从因果发现和机器学习的融合中纳入技术的发展,验证和透明的理论形式规范。然后,我们提出将完全指定的理论模型的复杂性降低到与给定目标假设相关的基本子模型中的方法。从这里,我们确定利息量是否可以从数据中估算出来,如果是的,则建议使用半参数机器学习方法来估计因果关系。总体目标是介绍新的研究管道,该管道可以(a)促进与测试因果理论的愿望兼容的科学询问(b)鼓励我们的理论透明代表作为明确的数学对象,(c)将我们的统计模型绑定到我们的统计模型中该理论的特定属性,因此减少了理论到模型间隙通常引起的规范不足问题,以及(d)产生因果关系和可重复性的结果和估计。通过具有现实世界数据的教学示例来证明该过程,我们以摘要和讨论来结论。
translated by 谷歌翻译
科学研究的基本目标是了解因果关系。然而,尽管因果关系在生活和社会科学中的重要作用,但在自然语言处理(NLP)中并不具有相同的重要性,而自然语言处理(NLP)传统上更加重视预测任务。这种区别开始逐渐消失,随着因果推理和语言处理的融合,跨学科研究的新兴领域。尽管如此,关于NLP因果关系的研究仍然散布在没有统一的定义,基准数据集的情况下,并清楚地表达了将因果推论应用于文本领域的挑战和机遇,并具有其独特的属性。在这项调查中,我们巩固了整个学术领域的研究,并将其置于更广泛的NLP景观中。我们介绍了用文本估算因果效应的统计挑战,其中包含文本用作结果,治疗或解决混杂问题的设置。此外,我们探讨了因果推理的潜在用途,以提高NLP模型的鲁棒性,公平性和解释性。因此,我们提供了NLP社区因果推断的统一概述。
translated by 谷歌翻译
There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to make their algorithms more understandable. Much of this research is focused on explicitly explaining decisions or actions to a human observer, and it should not be controversial to say that looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence. However, it is fair to say that most work in explainable artificial intelligence uses only the researchers' intuition of what constitutes a 'good' explanation. There exists vast and valuable bodies of research in philosophy, psychology, and cognitive science of how people define, generate, select, evaluate, and present explanations, which argues that people employ certain cognitive biases and social expectations towards the explanation process. This paper argues that the field of explainable artificial intelligence should build on this existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics. It draws out some important findings, and discusses ways that these can be infused with work on explainable artificial intelligence.
translated by 谷歌翻译
机器学习显着增强了机器人的能力,使他们能够在人类环境中执行广泛的任务并适应我们不确定的现实世界。机器学习各个领域的最新作品强调了公平性的重要性,以确保这些算法不会再现人类的偏见并导致歧视性结果。随着机器人学习系统在我们的日常生活中越来越多地执行越来越多的任务,了解这种偏见的影响至关重要,以防止对某些人群的意外行为。在这项工作中,我们从跨学科的角度进行了关于机器人学习公平性的首次调查,该研究跨越了技术,道德和法律挑战。我们提出了偏见来源的分类法和由此产生的歧视类型。使用来自不同机器人学习域的示例,我们研究了不公平结果和减轻策略的场景。我们通过涵盖不同的公平定义,道德和法律考虑以及公平机器人学习的方法来介绍该领域的早期进步。通过这项工作,我们旨在为公平机器人学习中的开创性发展铺平道路。
translated by 谷歌翻译
“算法公平性”的新兴领域提供了一种用于推理算法预测和决策的公平的一组新颖的方法。甚至作为算法公平已经成为提高域名在此类公共政策中平等的努力的突出成分,它也面临着显着的限制和批评。最基本的问题是称为“公平性不可能”的数学结果(公平的数学定义之间的不相容性)。此外,满足公平标准的许多算法实际上加剧了压迫。这两个问题呼吁质疑算法公平是否可以在追求平等中发挥富有成效的作用。在本文中,我将这些问题诊断为算法公平方法的乘积,并提出了该领域的替代路径。 “正式算法公平”的主导方法遭受了基本限制:它依赖于狭窄的分析框架,这些分析框架仅限于特定决策过程,孤立于这些决定的背景。鉴于这种缺点,我借鉴了法律和哲学的实质性平等的理论,提出了一种替代方法:“实质性算法公平。”实质性算法公平性采用更广泛的范围来分析公平性,超出特定决策点,以考虑社会等级,以及算法促进的决策的影响。因此,实质性算法公平表明,改革,使压迫压迫和逃避公平的不可能性。此外,实质性算法公平呈现出算法公平领域的新方向:远离“公平性”的正式数学模型,并朝着算法促进平等的实质性评估。
translated by 谷歌翻译
本文总结并评估了追求人工智能(AI)系统公平性的各种方法,方法和技术。它检查了这些措施的优点和缺点,并提出了定义,测量和防止AI偏见的实际准则。特别是,它警告了一些简单而常见的方法来评估AI系统中的偏见,并提供更复杂和有效的替代方法。该论文还通过在高影响力AI系统的不同利益相关者之间提供通用语言来解决该领域的广泛争议和困惑。它描述了涉及AI公平的各种权衡,并提供了平衡它们的实用建议。它提供了评估公平目标成本和收益的技术,并定义了人类判断在设定这些目标中的作用。本文为AI从业者,组织领导者和政策制定者提供了讨论和指南,以及针对更多技术受众的其他材料的各种链接。提供了许多现实世界的例子,以从实际角度阐明概念,挑战和建议。
translated by 谷歌翻译
数据科学任务可以被视为了解数据的感觉或测试关于它的假设。从数据推断的结论可以极大地指导我们做出信息做出决定。大数据使我们能够与机器学习结合执行无数的预测任务,例如鉴定患有某种疾病的高风险患者并采取可预防措施。然而,医疗保健从业者不仅仅是仅仅预测的内容 - 它们也对输入特征和临床结果之间的原因关系感兴趣。了解这些关系将有助于医生治疗患者并有效降低风险。通常通过随机对照试验鉴定因果关系。当科学家和研究人员转向观察研究并试图吸引推论时,这种试验通常是不可行的。然而,观察性研究也可能受到选择和/或混淆偏差的影响,这可能导致错误的因果结论。在本章中,我们将尝试突出传统机器学习和统计方法中可能出现的一些缺点,以分析观察数据,特别是在医疗保健数据分析域中。我们将讨论因果化推理和方法,以发现医疗领域的观测研究原因。此外,我们将展示因果推断在解决某些普通机器学习问题等中的应用,例如缺少数据和模型可运输性。最后,我们将讨论将加强学习与因果关系相结合的可能性,作为反击偏见的一种方式。
translated by 谷歌翻译