提供公共产品的公共政策,特别是那些涉及通过限制个人自由来合作,始终会产生对治理合法性的争论。多智能体增强学习(MARL)方法适用于支持以个人利益的成本提供公共政策的公共政策的合法性。在这些政策中,区域间协作大流行控制是一个突出的例子,这对于面临的全球大流行像Covid-19的越来越多的联系方式变得更加重要。在不同的地区系统中,已经观察到不同的协作策略模式,但它缺乏分析过程,以获得这些策略的合法性。在本文中,我们利用大流行控制的区域间合作为例,以展示Marl的必要性,从而合法化执行此类区域间合作的政策。在示例性环境中的实验结果表明,我们的Marl方法能够展示对合作供应公共物品的个人自由的有效性和必要性。我们的Marl代理商在不同的协作水平下学习了不同的最佳政策,这是一种可解释的合作模式,有助于平衡不同类型的地区遭受的损失,从而促进整体福利。与此同时,通过更高的合作水平学习政策会产生更高的全球奖励,这阐述了利益,从而为促进区域间合作的合法性提供了一种新的理由。因此,我们的方法显示了Marl在计算建模和支持同意管理理论中,由诺贝尔奖获奖者J. M. Buchanan开发。
translated by 谷歌翻译
全球综合合作对于限制全球温度的升高至关重要,同时继续经济发展,例如减少严重的不平等或实现长期经济增长。与N战略代理进行缓解气候变化的长期合作提出了一个复杂的游戏理论问题。例如,代理商可以谈判并达成气候协议,但是没有中央权力可以执行遵守这些协议。因此,设计谈判和协议框架以促进合作,允许所有代理人达到其个人政策目标并激励长期遵守,这一点至关重要。这是一个跨学科的挑战,要求在机器学习,经济学,气候科学,法律,政策,道德和其他领域进行研究人员之间的合作。特别是,我们认为机器学习是解决该领域复杂性的关键工具。为了促进这项研究,在这里,我们介绍了一个多区域综合评估模型,模拟全球气候和经济,可用于设计和评估不同谈判和协议框架的战略成果。我们还描述了如何使用多代理增强学习来使用水稻N训练理性剂。该框架是全球气候合作的基础,这是一个工作组协作和气候谈判和协议设计的竞争。在这里,我们邀请科学界使用Rice-N,机器学习,经济直觉和其他领域知识来设计和评估其解决方案。更多信息可以在www.ai4climatecoop.org上找到。
translated by 谷歌翻译
未来的互联网涉及几种新兴技术,例如5G和5G网络,车辆网络,无人机(UAV)网络和物联网(IOT)。此外,未来的互联网变得异质并分散了许多相关网络实体。每个实体可能需要做出本地决定,以在动态和不确定的网络环境下改善网络性能。最近使用标准学习算法,例如单药强化学习(RL)或深入强化学习(DRL),以使每个网络实体作为代理人通过与未知环境进行互动来自适应地学习最佳决策策略。但是,这种算法未能对网络实体之间的合作或竞争进行建模,而只是将其他实体视为可能导致非平稳性问题的环境的一部分。多机构增强学习(MARL)允许每个网络实体不仅观察环境,还可以观察其他实体的政策来学习其最佳政策。结果,MAL可以显着提高网络实体的学习效率,并且最近已用于解决新兴网络中的各种问题。在本文中,我们因此回顾了MAL在新兴网络中的应用。特别是,我们提供了MARL的教程,以及对MARL在下一代互联网中的应用进行全面调查。特别是,我们首先介绍单代机Agent RL和MARL。然后,我们回顾了MAL在未来互联网中解决新兴问题的许多应用程序。这些问题包括网络访问,传输电源控制,计算卸载,内容缓存,数据包路由,无人机网络的轨迹设计以及网络安全问题。
translated by 谷歌翻译
Cooperative multi-agent reinforcement learning (MARL) has achieved significant results, most notably by leveraging the representation-learning abilities of deep neural networks. However, large centralized approaches quickly become infeasible as the number of agents scale, and fully decentralized approaches can miss important opportunities for information sharing and coordination. Furthermore, not all agents are equal -- in some cases, individual agents may not even have the ability to send communication to other agents or explicitly model other agents. This paper considers the case where there is a single, powerful, \emph{central agent} that can observe the entire observation space, and there are multiple, low-powered \emph{local agents} that can only receive local observations and are not able to communicate with each other. The central agent's job is to learn what message needs to be sent to different local agents based on the global observations, not by centrally solving the entire problem and sending action commands, but by determining what additional information an individual agent should receive so that it can make a better decision. In this work we present our MARL algorithm \algo, describe where it would be most applicable, and implement it in the cooperative navigation and multi-agent walker domains. Empirical results show that 1) learned communication does indeed improve system performance, 2) results generalize to heterogeneous local agents, and 3) results generalize to different reward structures.
translated by 谷歌翻译
在空间显式的基于个别模型中捕获和模拟智能自适应行为仍然是研究人员持续的挑战。虽然收集了不断增长的现实行为数据,但存在很少的方法,可以量化和正式化关键的个人行为以及它们如何改变空间和时间。因此,通常使用的常用代理决策框架(例如事件条件 - 行动规则)通常只需要仅关注狭窄的行为范围。我们认为,这些行为框架通常不会反映现实世界的情景,并且未能捕捉如何以响应刺激而发展行为。对机器学习方法的兴趣增加了近年来模拟智能自适应行为的兴趣。在该区域中开始获得牵引的一种方法是增强学习(RL)。本文探讨了如何使用基于简单的捕食者 - 猎物代理的模型(ABM)来应用RL创建紧急代理行为。运行一系列模拟,我们证明了使用新型近端政策优化(PPO)算法培训的代理以展示现实世界智能自适应行为的性质,例如隐藏,逃避和觅食。
translated by 谷歌翻译
大型人口系统的分析和控制对研究和工程的各个领域引起了极大的兴趣,从机器人群的流行病学到经济学和金融。一种越来越流行和有效的方法来实现多代理系统中的顺序决策,这是通过多机构增强学习,因为它允许对高度复杂的系统进行自动和无模型的分析。但是,可伸缩性的关键问题使控制和增强学习算法的设计变得复杂,尤其是在具有大量代理的系统中。尽管强化学习在许多情况下都发现了经验成功,但许多代理商的问题很快就变得棘手了,需要特别考虑。在这项调查中,我们将阐明当前的方法,以通过多代理强化学习以及通过诸如平均场游戏,集体智能或复杂的网络理论等研究领域进行仔细理解和分析大型人口系统。这些经典独立的主题领域提供了多种理解或建模大型人口系统的方法,这可能非常适合将来的可拖动MARL算法制定。最后,我们调查了大规模控制的潜在应用领域,并确定了实用系统中学习算法的富有成果的未来应用。我们希望我们的调查可以为理论和应用科学的初级和高级研究人员提供洞察力和未来的方向。
translated by 谷歌翻译
Covid-19疫苗是我们最好的赌注,用于减轻大流行的持续冲击。但是,疫苗也预计将是有限的资源。最佳分配策略,特别是在具有访问不公平的国家和热点的时间分离,可能是停留疾病传播的有效方式。我们通过提出一种新的管道VACSIM来实现这个问题,将深度加强学习模型延装到用于优化Covid-19疫苗的分布的上下文的匪徒方法中。虽然加强学习模型建议了更好的行动和奖励,但上下文匪徒允许在现实世界场景中每天到日常实施的在线修改。我们评估此框架,防止与印度五个不同状态的Covid-19案例发生比例分配疫苗的天真分配方法(Assam,Delhi,Jharkhand,Maharashtra和Nagaland),并展示高达9039潜力的潜在感染,并增加了显着增加在通过VacSim方法的45天内限制差异的疗效。我们的型号和平台对印度所有国家和潜在的全球范围内都是可扩张的。我们还提出了新的评估策略,包括标准的基于区间模型的预测和对我们模型的因果关系评估。由于所有模型都携带可能需要在各种情况下进行测试的假设,因此我们开源我们的模型Vackim并贡献了与Openai健身房兼容的新型加固学习环境,以使其在全球的现实世界应用中可扩展。 (http://vacsim.tavlab.iiitd.edu.in:8000/)。
translated by 谷歌翻译
在本文中,我们提出了一个名为“星际争霸多代理挑战”的新颖基准,代理商学习执行多阶段任务并使用没有精确奖励功能的环境因素。以前的挑战(SMAC)被认为是多名强化学习的标准基准,主要涉及确保所有代理人仅通过具有明显的奖励功能的精细操纵而合作消除接近对手。另一方面,这一挑战对MARL算法的探索能力有效地学习隐式多阶段任务和环境因素以及微控制感兴趣。这项研究涵盖了进攻和防御性场景。在进攻情况下,代理商必须学会先寻找对手,然后消除他们。防御性场景要求代理使用地形特征。例如,代理需要将自己定位在保护结构后面,以使敌人更难攻击。我们研究了SMAC+下的MARL算法,并观察到最近的方法在与以前的挑战类似,但在进攻情况下表现不佳。此外,我们观察到,增强的探索方法对性能有积极影响,但无法完全解决所有情况。这项研究提出了未来研究的新方向。
translated by 谷歌翻译
实际经济体可以被视为一种顺序不完美信息游戏,具有许多异质,互动的各种代理类型的战略代理,例如消费者,公司和政府。动态一般均衡模型是在此类系统中建模经济活动,交互和结果的普通经济工具。然而,当所有代理商是战略和互动时,现有的分析和计算方法努力寻找明确的均衡,而联合学习是不稳定的并且具有挑战性。在其他人中,一个重要的原因是,一个经济代理人的行动可能会改变另一名代理人的奖励职能,例如,当公司更改价格或政府更改税收时,消费者的消费者的消费收入变化。我们表明,多代理深度加强学习(RL)可以发现稳定的解决方案,即通过使用结构的学习课程和高效的GPU,在经济模拟中,在经济仿真中,在经济模拟中,可以发现普遍存器类型的稳定解决方案。仿真和培训。概念上,我们的方法更加灵活,不需要不切实际的假设,例如市场清算,通常用于分析途径。我们的GPU实施使得能够在合理的时间范围内具有大量代理的经济体,例如,在一天内完成培训。我们展示了我们在实际商业周期模型中的方法,这是一个代表性的DGE模型系列,100名工人消费者,10家公司和政府税收和重新分配。我们通过近似最佳响应分析验证了学习的Meta-Game epsilon-Nash均衡,表明RL政策与经济直觉保持一致,我们的方法是建设性的,例如,通过明确地学习Meta-Game epsilon-Nash ePhilia的频谱打开RBC型号。
translated by 谷歌翻译
在这项工作中,我们通过用户定义的关系网络将“社交”相互作用集成到MARL设置中,并检查代理与代理关系对新兴行为兴起的影响。利用社会学和神经科学的见解,我们提出的框架模型使用奖励共享的关系网络(RSRN)的构图代理关系,其中网络边缘的权重衡量了一项代理在成功中投入多少代理(或关心“关心) ') 其他。我们构建关系奖励是RSRN相互作用权重的函数,以通过多代理增强学习算法共同训练多代理系统。该系统的性能经过了具有不同关系网络结构(例如自我利益,社区和专制网络)的3个代理方案的测试。我们的结果表明,奖励分享关系网络可以显着影响学习的行为。我们认为,RSRN可以充当一个框架,不同的关系网络会产生独特的新兴行为,通常类似于对此类网络的直觉社会学理解。
translated by 谷歌翻译
自驱动粒子(SDP)描述了日常生活中常见的一类常见的多种子体系统,例如植绒鸟类和交通流量。在SDP系统中,每个代理商都追求自己的目标,并不断改变其与附近代理商的合作或竞争行为。手动设计用于此类SDP系统的控制器是耗时的,而产生的紧急行为往往是不可逼真的,也不是更广泛的。因此,SDP系统的现实模拟仍然具有挑战性。强化学习提供了一种吸引人的替代方案,用于自动化SDP控制器的开发。然而,以前的多档强化学习(Marl)方法将代理人定义为手头之前的队友或敌人,这未能捕获每个代理的作用的SDP的本质,即使在一个集中也变化或竞争。为了用Marl模拟SDP,一个关键挑战是协调代理的行为,同时仍然最大化个人目标。将交通仿真作为测试床,在这项工作中,我们开发了一种称为协调政策优化(Copo)的新型MARL方法,该方法包括社会心理学原理来学习SDP的神经控制器。实验表明,与各种度量标准的Marl基线相比,该方法可以实现优越的性能。明显的车辆明显地表现出复杂和多样化的社会行为,以提高整个人口的性能和安全性。演示视频和源代码可用于:https://decisionforce.github.io/copo/
translated by 谷歌翻译
Reinforcement learning in multi-agent scenarios is important for real-world applications but presents challenges beyond those seen in singleagent settings. We present an actor-critic algorithm that trains decentralized policies in multiagent settings, using centrally computed critics that share an attention mechanism which selects relevant information for each agent at every timestep. This attention mechanism enables more effective and scalable learning in complex multiagent environments, when compared to recent approaches. Our approach is applicable not only to cooperative settings with shared rewards, but also individualized reward settings, including adversarial settings, as well as settings that do not provide global states, and it makes no assumptions about the action spaces of the agents. As such, it is flexible enough to be applied to most multi-agent learning problems.
translated by 谷歌翻译
流动性和流量的许多方案都涉及多种不同的代理,需要合作以找到共同解决方案。行为计划的最新进展使用强化学习以寻找有效和绩效行为策略。但是,随着自动驾驶汽车和车辆对X通信变得越来越成熟,只有使用单身独立代理的解决方案在道路上留下了潜在的性能增长。多代理增强学习(MARL)是一个研究领域,旨在为彼此相互作用的多种代理找到最佳解决方案。这项工作旨在将该领域的概述介绍给研究人员的自主行动能力。我们首先解释Marl并介绍重要的概念。然后,我们讨论基于Marl算法的主要范式,并概述每个范式中最先进的方法和思想。在这种背景下,我们调查了MAL在自动移动性场景中的应用程序,并概述了现有的场景和实现。
translated by 谷歌翻译
在人工多智能体系中,学习协作政策的能力是基于代理商的沟通技巧,他们必须能够编码从环境中收到的信息,并学习如何与手头任务所要求的其他代理分享它。我们介绍了一个深度加强学习方法,连接驱动的通信(CDC),促进了多种子体协作行为的出现,仅通过经验。代理被建模为加权图的节点,其状态相关的边缘编码可以交换的对方式。我们介绍了一种依赖于图形的关注机制,可以控制代理的传入消息如何加权。此机制完全核对图表所表示的系统的当前状态,并在捕获信息如何在图中流动的扩散过程中构建。图形拓扑未被假定已知先验,但在代理人的观察中动态依赖于代理人,并以端到端的方式与注意机制和政策同时学习。我们的经验结果表明,CDC能够学习有效的协作政策,并可以在合作导航任务上过度执行竞争学习算法。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
多目标自组织追求(SOP)问题已广泛应用,并被认为是一个充满挑战的分布式系统的自组织游戏,在该系统中,智能代理在其中合作追求具有部分观察的多个动态目标。这项工作为分散的多机构系统提出了一个框架,以提高智能代理的搜索和追求能力。我们将一个自组织的系统建模为可观察到的马尔可夫游戏(POMG),具有权力下放,部分观察和非通信的特征。然后将拟议的分布式算法:模糊自组织合作协同进化(FSC2)杠杆化,以解决多目标SOP中的三个挑战:分布式自组织搜索(SOS),分布式任务分配和分布式单目标追踪。 FSC2包括一种协调的多代理深钢筋学习方法,该方法使均匀的代理能够学习天然SOS模式。此外,我们提出了一种基于模糊的分布式任务分配方法,该方法将多目标SOP分解为几个单目标追求问题。合作进化原则用于协调每个单一目标问题的分布式追随者。因此,可以缓解POMG中固有的部分观察和分布式决策的不确定性。实验结果表明,在所有三个子任务中,分布式不传动的多机构协调都具有部分观察结果,而2048 FSC2代理可以执行有效的多目标SOP,其捕获率几乎为100%。
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译
多机构增强学习(MARL)已成为解决分散决策问题的有用方法。近年来提出的许多突破性算法一直在稳步增长。在这项工作中,我们仔细研究了这一快速发展,重点是在合作Marl的大量研究中采用的评估方法。通过对先前工作进行详细的荟萃分析,涵盖了从2016年至2022年接受出版的75篇论文,我们引起了人们对真正进步率的质疑的令人担忧的趋势。我们在更广泛的背景下进一步考虑了这些趋势,并从单一AGENT RL文献中获得了有关类似问题的灵感,这些建议以及仍然适用于MARL的建议。将这些建议与我们分析的新见解相结合,我们提出了合作MARL的标准化绩效评估方案。我们认为,这样的标准协议,如果被广泛采用,将大大提高未来研究的有效性和信誉,使复制和可重复性更加容易,并提高该领域的能力,通过能够通过能够准确评估进度的速度进行跨不同作品的合理比较。最后,我们在我们的项目网站上公开发布荟萃分析数据,以供未来的评估研究:https://sites.google.com/view/marl-andard-protocol
translated by 谷歌翻译
交通优化挑战,如负载平衡,流量调度和提高数据包交付时间,是广域网(WAN)中困难的在线决策问题。例如,需要复杂的启发式方法,以找到改善分组输送时间并最小化可能由链接故障或拥塞引起的中断的最佳路径。最近的加强学习(RL)算法的成功可以提供有用的解决方案,以建立更好的鲁棒系统,这些系统从无模式设置中学习。在这项工作中,我们考虑了一条路径优化问题,专门针对数据包路由,在大型复杂网络中。我们开发和评估一种无模型方法,应用多代理元增强学习(MAMRL),可以确定每个数据包的下一跳,以便将其传递到其目的地,最短的时间整体。具体地,我们建议利用和比较深度策略优化RL算法,以便在通信网络中启用分布式无模型控制,并呈现基于新的Meta学习的框架Mamrl,以便快速适应拓扑变化。为了评估所提出的框架,我们用各种WAN拓扑模拟。我们广泛的数据包级仿真结果表明,与古典最短路径和传统的加强学习方法相比,Mamrl即使网络需求增加也显着降低了平均分组交付时间;与非元深策略优化算法相比,我们的结果显示在连杆故障发生的同时出现相当的平均数据包交付时间时减少较少的剧集中的数据包丢失。
translated by 谷歌翻译
我们将解决多车程路由问题解释为马尔可夫的团队游戏,其成本部分可观察到。为了为一组给定的客户提供服务,游戏代理(车辆)的共同目标是确定最佳的总成本的团队最佳代理路线。因此,每个代理商仅观察自己的成本。我们的多机构增强学习方法,即所谓的多机神经重写者,建立在单格神经重写者的基础上,以通过迭代重写解决方案解决该问题。并行代理操作执行和部分可观察性需要游戏的新重写规则。我们建议在系统中引入一个所谓的池,该池是未访问的节点的收集点。它使代理商能够同时采取行动并以无冲突的方式交换节点。我们仅在学习过程中仅分享对代理的成本的有限披露。在推断期间,每个代理人都完全基于其自身的成本来表现出来。小问题大小的首先经验结果表明,我们达到的性能接近所采用的Or-Tools基准,该基准在完美的成本信息设置中运行。
translated by 谷歌翻译