最近的研究表明,先进的前锋在深度生成模型中发挥着重要作用。作为基于示例的基于示例的VAE的变体,示例性VAE已经实现了令人印象深刻的结果。然而,由于模型设计的性质,基于示例的模型通常需要大量的数据来参与训练,这导致巨大的计算复杂性。为了解决这个问题,我们提出了贝叶斯伪移动的样份vae(bype-vae),一种基于Bayesian伪动脉的先前vae的新变种。该提出的先后在小规模的伪电阻上而不是整个数据集进行调节,以降低计算成本并避免过度拟合。同时,在VAE训练期间,通过随机优化算法获得最佳伪验证,旨在最大限度地基于伪移动的基于伪组件的Kullback-Leibler发散,并且基于整个数据集。实验结果表明,Bype-VAE可以在密度估计,代表学习和生成数据增强的任务中实现最先进的VAES对最先进的VAES的竞争改进。特别是,在基本的VAE架构上,Bype-VAE比示例性VAE快3倍,同时几乎保持性能。代码可用于\ url {https:/github.com/aiqz/bype-vae}。
translated by 谷歌翻译
变异推理(VI)的核心原理是将计算复杂后概率密度计算的统计推断问题转换为可拖动的优化问题。该属性使VI比几种基于采样的技术更快。但是,传统的VI算法无法扩展到大型数据集,并且无法轻易推断出越野数据点,而无需重新运行优化过程。该领域的最新发展,例如随机,黑框和摊销VI,已帮助解决了这些问题。如今,生成的建模任务广泛利用摊销VI来实现其效率和可扩展性,因为它利用参数化函数来学习近似的后验密度参数。在本文中,我们回顾了各种VI技术的数学基础,以构成理解摊销VI的基础。此外,我们还概述了最近解决摊销VI问题的趋势,例如摊销差距,泛化问题,不一致的表示学习和后验崩溃。最后,我们分析了改善VI优化的替代差异度量。
translated by 谷歌翻译
Many different methods to train deep generative models have been introduced in the past. In this paper, we propose to extend the variational auto-encoder (VAE) framework with a new type of prior which we call "Variational Mixture of Posteriors" prior, or VampPrior for short. The VampPrior consists of a mixture distribution (e.g., a mixture of Gaussians) with components given by variational posteriors conditioned on learnable pseudo-inputs. We further extend this prior to a two layer hierarchical model and show that this architecture with a coupled prior and posterior, learns significantly better models. The model also avoids the usual local optima issues related to useless latent dimensions that plague VAEs. We provide empirical studies on six datasets, namely, static and binary MNIST, OMNIGLOT, Caltech 101 Silhouettes, Frey Faces and Histopathology patches, and show that applying the hierarchical VampPrior delivers state-of-the-art results on all datasets in the unsupervised permutation invariant setting and the best results or comparable to SOTA methods for the approach with convolutional networks.
translated by 谷歌翻译
一个著名的矢量定量变分自动编码器(VQ-VAE)的问题是,学识渊博的离散表示形式仅使用代码书的全部容量的一小部分,也称为代码书崩溃。我们假设VQ-VAE的培训计划涉及一些精心设计的启发式方法,这是这个问题的基础。在本文中,我们提出了一种新的训练方案,该方案通过新颖的随机去量化和量化扩展标准VAE,称为随机量化变异自动编码器(SQ-VAE)。在SQ-VAE中,我们观察到一种趋势,即在训练的初始阶段进行量化是随机的,但逐渐收敛于确定性量化,我们称之为自宣传。我们的实验表明,SQ-VAE在不使用常见启发式方法的情况下改善了代码书的利用率。此外,我们从经验上表明,在视觉和语音相关的任务中,SQ-VAE优于VAE和VQ-VAE。
translated by 谷歌翻译
变形AutoEncoder(VAE)是无监督学习的深度生成模型,允许将观察编码为有意义的潜在空间。当任务按顺序到达时,VAE易于灾难性忘记,并且只有当前的数据可用。我们解决了这个持续学习vaes的问题。众所周知,在非持续设置中,在潜空间上的先前分配的选择对于VAE至关重要。我们认为它也有助于避免灾难性的遗忘。我们将在每个任务之前学习聚合后部的近似值。该近似是参数化作为在可训练的伪输入中评估的编码器诱导的分布的添加剂混合物。我们使用贪婪的升压方法,并使用熵正则化来学习组件。此方法鼓励组件多样性,这是必不可少的,因为我们的目标是与最少的组件存储最少的组件。基于学习的先验,我们介绍了持续学习VAE的端到端方法,并为常用的基准(MNIST,时尚Mnist,Notmnist)和Celeba数据集提供实证研究。对于每个数据集,所提出的方法避免以全自动方式遗漏灾难性忘记。
translated by 谷歌翻译
变形AutoEncoders(VAES)是具有许多域中应用的强大的基于似然的生成模型之一。然而,他们努力产生高质量的图像,尤其是当样品从之前没有任何回火时获得。 VAES生成质量的一个解释是先前孔问题:前提分配不能匹配近似后部的总体近似。由于这种不匹配,在不对应于任何编码图像的之前,存在具有高密度的潜在空间中的区域。来自这些区域的样本被解码为损坏的图像。为了解决这个问题,我们提出了基于能源的基础产品,由基础产品的乘积和重新免除因子,旨在使基座更接近骨料后部。我们通过噪声对比估计训练重重的因素,我们将其概括为具有许多潜在变量组的分层VAE。我们的实验证实,所提出的噪声对比前沿通过MNIST,CIFAR-10,CELEBA 64和Celeba HQ 256数据集的大边缘改善了最先进的VAE的生成性能。我们的方法很简单,可以应用于各种VAE,以提高其先前分配的表现。
translated by 谷歌翻译
近似复杂的概率密度是现代统计中的核心问题。在本文中,我们介绍了变分推理(VI)的概念,这是一种机器学习中的流行方法,该方法使用优化技术来估计复杂的概率密度。此属性允许VI汇聚速度比经典方法更快,例如Markov Chain Monte Carlo采样。概念上,VI通过选择一个概率密度函数,然后找到最接近实际概率密度的家庭 - 通常使用Kullback-Leibler(KL)发散作为优化度量。我们介绍了缩窄的证据,以促进近似的概率密度,我们审查了平均场变分推理背后的想法。最后,我们讨论VI对变分式自动编码器(VAE)和VAE-生成的对抗网络(VAE-GAN)的应用。用本文,我们的目标是解释VI的概念,并通过这种方法协助协助。
translated by 谷歌翻译
近年来,由于其对复杂分布进行建模的能力,深层生成模型引起了越来越多的兴趣。在这些模型中,变异自动编码器已被证明是计算有效的,并且在多个领域中产生了令人印象深刻的结果。在这一突破之后,为了改善原始出版物而进行了广泛的研究,从而导致各种不同的VAE模型响应不同的任务。在本文中,我们介绍了Pythae,这是一个多功能的开源Python库,既可以提供统一的实现和专用框架,允许直接,可重现且可靠地使用生成自动编码器模型。然后,我们建议使用此库来执行案例研究基准测试标准,在其中我们介绍并比较了19个生成自动编码器模型,代表了下游任务的一些主要改进,例如图像重建,生成,分类,聚类,聚类和插值。可以在https://github.com/clementchadebec/benchmark_vae上找到开源库。
translated by 谷歌翻译
在这项工作中,我们为生成自动编码器的变异培训提供了确切的可能性替代方法。我们表明,可以使用可逆层来构建VAE风格的自动编码器,该层提供了可拖动的精确可能性,而无需任何正则化项。这是在选择编码器,解码器和先前体系结构的全部自由的同时实现的,这使我们的方法成为培训现有VAE和VAE风格模型的替换。我们将结果模型称为流中的自动编码器(AEF),因为编码器,解码器和先验被定义为整体可逆体系结构的单个层。我们表明,在对数可能,样本质量和降低性能的方面,该方法的性能比结构上等效的VAE高得多。从广义上讲,这项工作的主要野心是在共同的可逆性和确切的最大可能性的共同框架下缩小正常化流量和自动编码器文献之间的差距。
translated by 谷歌翻译
深度神经网络拥有的一个重要股权是在以前看不见的数据上对分发检测(OOD)进行强大的能力。在为现实世界应用程序部署模型时,此属性对于安全目的至关重要。最近的研究表明,概率的生成模型可以在这项任务上表现不佳,这令他们寻求估计培训数据的可能性。为了减轻这个问题,我们提出了对变分性自动化器(VAE)的指数倾斜的高斯先前分配。通过此之前,我们能够使用VAE自然分配的负面日志可能性来实现最先进的结果,同时比某些竞争方法快的数量级。我们还表明,我们的模型生产高质量的图像样本,这些样本比标准高斯VAE更清晰。新的先前分配具有非常简单的实现,它使用kullback leibler发散,该kullback leibler发散,该横向leibler发散,该分解比较潜伏向量的长度与球体的半径之间的差异。
translated by 谷歌翻译
基于分数的生成模型(SGMS)最近在样品质量和分配覆盖范围内表现出令人印象深刻的结果。但是,它们通常直接应用于数据空间,并且通常需要数千个网络评估来采样。在这里,我们提出了基于潜在的分数的生成模型(LSGM),这是一种在潜在空间中培训SGM的新方法,依赖于变分性AutoEncoder框架。从数据移动到潜伏空间允许我们培训更具表现力的生成模型,将SGMS应用于非连续数据,并在较小的空间中学习更顺畅的SGM,导致更少的网络评估和更快的采样。要以可扩展且稳定的方式启用培训LSGMS端到端,我们(i)我们(i)引入了适合于LSGM设置的新分数匹配目标,(ii)提出了一个新颖的分数函数参数化,允许SGM专注于关于简单正常的目标分布的不匹配,(III)分析了多种技术,用于减少训练目标的方差。 LSGM在CIFAR-10上获得最先进的FID分数为2.10,优先表现出此数据集的所有现有生成结果。在Celeba-HQ-256上,LSGM在样品质量上与先前的SGMS相同,同时以两个数量级的采样时间表现出来。在模拟二进制图像中,LSGM在二值化omniglot数据集上实现了最先进的可能性。我们的项目页面和代码可以在https://nvlabs.github.io/lsgm找到。
translated by 谷歌翻译
基于能量的模型(EBMS)最近成功地代表了少量图像的复杂分布。然而,对它们的抽样需要昂贵的马尔可夫链蒙特卡罗(MCMC)迭代在高维像素空间中缓慢混合。与EBMS不同,变形AutoEncoders(VAES)快速生成样本,并配备潜在的空间,使得数据歧管的快速遍历。然而,VAE倾向于将高概率密度分配到实际数据分布之外的数据空间中的区域,并且经常在产生清晰图像时失败。在本文中,我们提出了VAE的一个共生组成和ebm的vaebm,提供了两个世界的eBM。 VAEBM使用最先进的VAE捕获数据分布的整体模式结构,它依赖于其EBM组件,以明确地从模型中排除非数据样区域并优化图像样本。此外,VAEBM中的VAE组件允许我们通过在VAE的潜空间中重新处理它们来加速MCMC更新。我们的实验结果表明,VAEBM在几个基准图像数据集上以大量边距开辟了最先进的VAES和EBMS。它可以产生高于256 $ \倍的高质量图像,使用短MCMC链。我们还证明了VAEBM提供了完整的模式覆盖范围,并在分配外检测中表现良好。源代码可在https://github.com/nvlabs/vaebm上获得
translated by 谷歌翻译
高维数据的歧管假设假设数据是通过改变从低维潜在空间获得的一组参数而生成的。深层生成模型(DGM)被广泛用于以无监督的方式学习数据表示。 DGM使用瓶颈体系结构(例如变异自动编码器(VAE))参数化数据空间中的基础低维歧管。 VAE的瓶颈尺寸被视为取决于数据集的超参数,并在广泛调整后在设计时间固定。由于大多数实际数据集的内在维度尚不清楚,因此固有维度与选择为超参数的潜在维度之间存在不匹配。这种不匹配可能会对表示形式学习和样本生成任务的模型性能产生负面影响。本文提出了相关性编码网络(RENS):一种新型的基于VAE的概率VAE框架,该框架在潜在空间中使用自动相关性确定(ARD)来学习数据特定的瓶颈维度。每个潜在维度的相关性是直接从数据以及使用随机梯度下降的其他模型参数以及适合非高斯先验的重新聚集技巧的其他模型参数中学到的。我们利用深处的概念来捕获数据和潜在空间中的置换统计属性,以确定相关性。所提出的框架是一般且灵活的,可用于最先进的VAE模型,该模型利用正规化器在潜在空间中施加特定特征(例如,脱离)。通过对合成和公共图像数据集进行了广泛的实验,我们表明,所提出的模型了解了相关的潜在瓶颈维度,而不会损害样品的表示和发电质量。
translated by 谷歌翻译
Variational autoencoders (VAEs) are powerful tools for learning latent representations of data used in a wide range of applications. In practice, VAEs usually require multiple training rounds to choose the amount of information the latent variable should retain. This trade-off between the reconstruction error (distortion) and the KL divergence (rate) is typically parameterized by a hyperparameter $\beta$. In this paper, we introduce Multi-Rate VAE (MR-VAE), a computationally efficient framework for learning optimal parameters corresponding to various $\beta$ in a single training run. The key idea is to explicitly formulate a response function that maps $\beta$ to the optimal parameters using hypernetworks. MR-VAEs construct a compact response hypernetwork where the pre-activations are conditionally gated based on $\beta$. We justify the proposed architecture by analyzing linear VAEs and showing that it can represent response functions exactly for linear VAEs. With the learned hypernetwork, MR-VAEs can construct the rate-distortion curve without additional training and can be deployed with significantly less hyperparameter tuning. Empirically, our approach is competitive and often exceeds the performance of multiple $\beta$-VAEs training with minimal computation and memory overheads.
translated by 谷歌翻译
在异常检测(AD)中,给出了识别测试样本是否异常,给出了正常样本的数据集。近期和有希望的广告方法依赖于深度生成模型,例如变形自动化器(VAES),用于对正常数据分布的无监督学习。在半监督广告(SSAD)中,数据还包括标记异常的小样本。在这项工作中,我们提出了两个用于SSAD培训VAES的两个变分方法。两种方法中的直观思路是将编码器训练到潜在向量之间的“分开”以进行正常和异常数据。我们表明,这个想法可以源于问题的原则概率制剂,并提出了简单有效的算法。我们的方法可以应用于各种数据类型,因为我们在从自然图像到天文学和医学的SSAD数据集上展示,可以与任何VAE模型架构相结合,并且自然与合奏相兼容。与未特定于特定数据类型的最先进的SSAD方法比较时,我们获得了异常值检测的显着改进。
translated by 谷歌翻译
马尔可夫链蒙特卡洛(MCMC),例如langevin Dynamics,有效地近似顽固的分布。但是,由于昂贵的数据采样迭代和缓慢的收敛性,它的用法在深层可变模型的背景下受到限制。本文提出了摊销的langevin Dynamics(ALD),其中数据划分的MCMC迭代完全被编码器的更新替换为将观测值映射到潜在变量中。这种摊销可实现有效的后验采样,而无需数据迭代。尽管具有效率,但我们证明ALD是MCMC算法有效的,其马尔可夫链在轻度假设下将目标后部作为固定分布。基于ALD,我们还提出了一个名为Langevin AutoCodeer(LAE)的新的深层变量模型。有趣的是,可以通过稍微修改传统自动编码器来实现LAE。使用多个合成数据集,我们首先验证ALD可以从目标后代正确获取样品。我们还在图像生成任务上评估了LAE,并证明我们的LAE可以根据变异推断(例如变异自动编码器)和其他基于MCMC的方法在测试可能性方面胜过现有的方法。
translated by 谷歌翻译
变异自动编码器(VAE)是最常用的无监督机器学习模型之一。但是,尽管对先前和后验的高斯分布的默认选择通常代表了数学方便的分布通常会导致竞争结果,但我们表明该参数化无法用潜在的超球体结构对数据进行建模。为了解决这个问题,我们建议使用von Mises-fisher(VMF)分布,从而导致超级潜在空间。通过一系列实验,我们展示了这种超球vae或$ \ mathcal {s} $ - vae如何更适合于用超球形结构捕获数据,同时胜过正常的,$ \ mathcal {n} $ - vae-,在其他数据类型的低维度中。http://github.com/nicola-decao/s-vae-tf和https://github.com/nicola-decao/nicola-decao/s-vae-pytorch
translated by 谷歌翻译
在没有监督信号的情况下学习简洁的数据表示是机器学习的基本挑战。实现此目标的一种突出方法是基于可能性的模型,例如变异自动编码器(VAE),以基于元元素来学习潜在表示,这是对下游任务有益的一般前提(例如,disentanglement)。但是,这种方法通常偏离原始的可能性体系结构,以应用引入的元优势,从而导致他们的培训不良变化。在本文中,我们提出了一种新颖的表示学习方法,Gromov-Wasserstein自动编码器(GWAE),该方法与潜在和数据分布直接匹配。 GWAE模型不是基于可能性的目标,而是通过最小化Gromov-Wasserstein(GW)度量的训练优化。 GW度量测量了在无与伦比的空间上支持的分布之间的面向结构的差异,例如具有不同的维度。通过限制可训练的先验的家庭,我们可以介绍元主题来控制下游任务的潜在表示。与现有基于VAE的方法的经验比较表明,GWAE模型可以通过更改先前的家族而无需进一步修改GW目标来基于元家庭学习表示。
translated by 谷歌翻译
基于高斯工艺(GP)建立的解码器由于非线性函数空间的边缘化而诱人。这样的模型(也称为GP-LVM)通常很昂贵且众所周知,在实践中训练,但可以使用变异推理和诱导点来缩放。在本文中,我们重新访问主动集近似值。我们基于最近发现的交叉验证链接来开发对数 - 边界可能性的新随机估计,并提出了其计算有效近似。我们证明,所得的随机活动集(SAS)近似显着提高了GP解码器训练的鲁棒性,同时降低了计算成本。SAS-GP在潜在空间中获得更多的结构,比例为许多数据点,并且比变异自动编码器更好地表示表示,这对于GP解码器来说很少是这种情况。
translated by 谷歌翻译
本文通过采取完全几何学的角度引入了对变异自动编码器框架的新解释。我们认为,香草vae自然而然地揭示了其潜在空间中的riemannian结构,并且考虑到这些几何方面可以导致更好的插值和改进的生成程序。这种新提出的采样方法包括从统一分布中的采样组成,该分布本质地从学到的利曼式潜在空间中得出,我们表明,使用此方案可以使香草VAE竞争性且比几个基准数据集中更先进的版本更好。由于已知生成模型对训练样品的数量很敏感,因此我们还强调了该方法在低数据状态下的鲁棒性。
translated by 谷歌翻译