我们研究了带有切换成本的土匪的最佳世界世界算法,最近由Rouyer,Seldin和Cesa-Bianchi提出,2021年。我们引入了一种令人惊讶的简单有效的算法}(t^{2/3})$在遗忘的对抗设置中,$ \ mathcal {o}(\ min \ {\ log(t)/\ delta^2,T^{2/3} \ \})$在随机约束的制度中,均具有(单位)切换成本,其中$ \ delta $是武器之间的差距。在随机限制的情况下,由于Rouyer等人,我们的界限比以前的结果得到了改善,这使$ \ Mathcal {o}(t^{1/3}/\ delta)$。我们伴随我们的结果,下限表明,通常,$ \ tilde {\ omega}(\ min \ {1/\ delta^2,t^{2/3} \})$遗憾是不可避免的。 - 具有$ \ mathcal {o}(t^{2/3})$ wort-case遗憾的算法的算法。
translated by 谷歌翻译
富达匪徒问题是$ k $的武器问题的变体,其中每个臂的奖励通过提供额外收益的富达奖励来增强,这取决于播放器如何对该臂进行“忠诚”在过去。我们提出了两种忠诚的模型。在忠诚点模型中,额外奖励的数量取决于手臂之前播放的次数。在订阅模型中,额外的奖励取决于手臂的连续绘制的当前数量。我们考虑随机和对抗问题。由于单臂策略在随机问题中并不总是最佳,因此对抗性环境中遗憾的概念需要仔细调整。我们介绍了三个可能的遗憾和调查,这可以是偏执的偏执。我们详细介绍了增加,减少和优惠券的特殊情况(玩家在手臂的每辆M $播放后获得额外的奖励)保真奖励。对于不一定享受载体遗憾的模型,我们提供了最糟糕的下限。对于那些展示Sublinear遗憾的模型,我们提供算法并绑定他们的遗憾。
translated by 谷歌翻译
我们调查了一个非旋转的强盗设置,其中不立即向玩家充满行动的丢失,而是以普遍的方式蔓延到后续轮。通过每轮末端观察到的瞬时损失是先前播放动作的许多损耗组件的总和。此设置包括一个特殊情况,该特例是具有延迟反馈的匪徒的特殊情况,是播放器单独观察延迟损耗的良好反馈。我们的第一个贡献是将标准强盗算法转换为可以在更难的设置中运行的一般减少:我们在原始算法的稳定性和后悔方面绑定了转换算法的遗憾。然后,我们表明,使用Tsallis熵的适当调谐的ftrl的转换具有令人遗憾的$ \ sqrt {(d + 1)kt} $,其中$ d $是最大延迟,$ k $是武器数量,$ t $是时间范围。最后,我们表明我们的结果通常不能通过在此设置中运行的任何算法的遗憾上展示匹配(最多一个日志因子)下限。
translated by 谷歌翻译
本文考虑了多臂强盗(MAB)问题,并提供了一种新的最佳世界(BOBW)算法,该算法在随机和对抗性设置中几乎最佳地工作。在随机设置中,某些现有的BOBW算法获得了$ o的紧密依赖性遗憾界限(\ sum_ {i:\ delta_i> 0} \ frac {\ log t} {\ log t} {\ delta_i} {\ delta_i})手臂$ i $和时间范围$ t $。如Audibert等。 [2007]但是,在具有低变化的臂的随机环境中,可以改善性能。实际上,他们提供了一种随机mab算法,具有$ o的差距依赖性遗憾界限t)损失方差$ \ sigma_i^2 $ a臂$ i $。在本文中,我们提出了具有差距依赖性界限的第一个BOBW算法,表明即使在可能的对抗环境中,这些方差信息也可以使用。此外,我们的间隙变量依赖性结合中的领先常数因子仅是(几乎)下界值的两倍。此外,所提出的算法在对抗环境中享有多个与数据有关的遗憾界限,并且在具有对抗性腐败的随机设置中很好地工作。所提出的算法基于以下规范化的领导方法,并采用了自适应学习率,取决于损失的经验预测误差,这导致了差距变化依赖性的遗憾界限,反映了武器的方差。
translated by 谷歌翻译
我们在非稳定性或时间变化偏好下,在$ k $的武器{动态遗憾最小化}中研究了\ mpph {动态遗憾最小化}。这是一个在线学习设置,其中代理在每个轮中选择一对项目,并仅观察该对的相对二进制`的次数“反馈,从该圆的底层偏好矩阵中采样。我们首先研究对抗性偏好序列的静态后悔最小化问题,并使用$ O(\ SQRT {kt})为高概率遗憾设计了高效的算法。我们接下来使用类似的算法思想,提出一种在非实践中的两种概念下的动态遗为最小化的高效且可透明的最佳算法。特别是,我们建立$ \ to(\ sqrt {skt})$和$ \ to({v_t ^ {1/3} k ^ {1/3} t ^ {2/3}})$动态后悔保证,$ S $是基础偏好关系中的“有效交换机”的总数,以及$ V_T $的衡量标准的“连续变化”非公平性。尽管现实世界系统中的非静止环境实用性,但在这项工作之前尚未研究这些问题的复杂性。我们通过证明在上述非实践概念下的符合下限保证匹配的匹配的算法来证明我们的算法的最优性。最后,我们通过广泛的模拟来证实我们的结果,并比较我们算法在最先进的基线上的功效。
translated by 谷歌翻译
We study Pareto optimality in multi-objective multi-armed bandit by providing a formulation of adversarial multi-objective multi-armed bandit and properly defining its Pareto regrets that can be generalized to stochastic settings as well. The regrets do not rely on any scalarization functions and reflect Pareto optimality compared to scalarized regrets. We also present new algorithms assuming both with and without prior information of the multi-objective multi-armed bandit setting. The algorithms are shown optimal in adversarial settings and nearly optimal in stochastic settings simultaneously by our established upper bounds and lower bounds on Pareto regrets. Moreover, the lower bound analyses show that the new regrets are consistent with the existing Pareto regret for stochastic settings and extend an adversarial attack mechanism from bandit to the multi-objective one.
translated by 谷歌翻译
我们通过反馈图来重新审视随机在线学习的问题,目的是设计最佳的算法,直至常数,无论是渐近还是有限的时间。我们表明,令人惊讶的是,在这种情况下,最佳有限时间遗憾的概念并不是一个唯一的定义属性,总的来说,它与渐近率是与渐近率分离的。我们讨论了替代选择,并提出了有限时间最优性的概念,我们认为是\ emph {有意义的}。对于这个概念,我们给出了一种算法,在有限的时间和渐近上都承认了准最佳的遗憾。
translated by 谷歌翻译
我们研究了$ k $武装的决斗匪徒问题,这是传统的多武器匪徒问题的一种变体,其中以成对比较的形式获得了反馈。以前的学习算法专注于$ \ textit {完全自适应} $设置,在每次比较后,算法可以进行更新。 “批处理”决斗匪徒问题是由Web搜索排名和推荐系统等大规模应用程序激励的,在这种应用程序中执行顺序更新可能是不可行的。在这项工作中,我们要问:$ \ textit {是否只使用几个自适应回合有解决方案,该回合与$ k $ armed的决斗匪徒的最佳顺序算法的渐近后悔界限?} $? \ textit {在condorcet条件下} $,这是$ k $武装的决斗匪徒问题的标准设置。我们获得$ O(k^2 \ log^2(k)) + O(k \ log(t))$的渐近遗憾地平线。我们的遗憾界限几乎与在Condorcet条件下完全顺序环境中已知的最佳后悔界限相匹配。最后,在各种现实世界数据集的计算实验中,我们观察到使用$ o(\ log(t))$ rounds的算法与完全顺序的算法(使用$ t $ rounds)的性能几乎相同。
translated by 谷歌翻译
我们考虑带有背包的土匪(从此以后,BWK),这是一种在供应/预算限制下的多臂土匪的通用模型。特别是,强盗算法需要解决一个众所周知的背包问题:找到最佳的物品包装到有限尺寸的背包中。 BWK问题是众多激励示例的普遍概括,范围从动态定价到重复拍卖,再到动态AD分配,再到网络路由和调度。尽管BWK的先前工作集中在随机版本上,但我们开创了可以在对手身上选择结果的另一个极端。与随机版本和“经典”对抗土匪相比,这是一个更加困难的问题,因为遗憾的最小化不再可行。相反,目的是最大程度地减少竞争比率:基准奖励与算法奖励的比率。我们设计了一种具有竞争比O(log t)的算法,相对于动作的最佳固定分布,其中T是时间范围;我们还证明了一个匹配的下限。关键的概念贡献是对问题的随机版本的新观点。我们为随机版本提出了一种新的算法,该算法是基于重复游戏中遗憾最小化的框架,并且与先前的工作相比,它具有更简单的分析。然后,我们为对抗版本分析此算法,并将其用作求解后者的子例程。
translated by 谷歌翻译
在本文中,我们将重尾多臂匪徒的概念概括为对抗环境,并为重尾多军匪徒(MAB)开发强大的最佳世界世界算法(MAB),其中损失具有$ \ alpha $ -th($ 1 <\ alpha \ le 2 $)由$ \ sigma^\ alpha $界定的矩,而方差可能不存在。具体来说,我们设计了一种算法\ texttt {htinf},当重型尾参数$ \ alpha $和$ \ sigma $是代理人所熟知的,\ texttt {htinf}同时实现了最佳的遗憾,以实现随机和逆境环境的最佳遗憾,不知道实际环境类型A-Priori。当$ \ alpha,\ sigma $是未知的时,\ texttt {htinf}在随机案例中实现了$ \ log t $ t $ style-style实例依赖的遗憾,而在对抗情况下,$ o(t)$ no-regret保证。我们进一步开发了算法\ texttt {adatinf},实现$ \ mathcal o(\ sigma k^{1- \ nicefrac 1 \ alpha} t^{\ nicefrac {1}对抗设置,没有$ \ alpha $和$ \ sigma $的事先知识。该结果与已知的遗憾下降(Bubeck等,2013)相匹配,该遗憾的是,它假设了随机环境,并且$ \ alpha $和$ \ sigma $均为众所周知。 To our knowledge, the proposed \texttt{HTINF} algorithm is the first to enjoy a best-of-both-worlds regret guarantee, and \texttt{AdaTINF} is the first algorithm that can adapt to both $\alpha$ and $\ Sigma $以实现经典重型尾部随机mab设置和我们新颖的对抗性配方的最佳差距遗憾。
translated by 谷歌翻译
我们提出了对Zimmert和Seldin [2020]算法的修改调整,用于对抗性的多型匪徒,并具有延迟的反馈,除了Zimmert和Seldin的最小值最佳对抗性遗憾保证外,还可以同时获得近乎遗憾的遗憾。有固定的延迟。具体而言,对抗性遗憾保证是$ \ Mathcal {o}(\ sqrt {tk} + \ sqrt {dt \ log k})$,其中$ t $是时间范围,$ k $是武器数量,并且$ d $是固定的延迟,而随机遗憾保证是$ \ Mathcal {o} \ left(\ sum_ {i \ neq i^*}(\ frac {1} {\ delta_i} \ log log(t) frac {d} {\ delta_ {i} \ log k}) + d k^{1/3} \ log k \ right)$,其中$ \ delta_i $是次优差距。我们还向任意延迟的情况提供了算法的扩展,该算法基于对最大延迟$ d_ {max} $的甲骨文知识,并获得$ \ mathcal {o}(\ sqrt {\ sqrt {tk} + \ sqrt { d \ log k} + d_ {max} k^{1/3} \ log k)$在对抗性方案中遗憾,其中$ d $是总延迟,$ \ mathcal {o} \ left(\ sum_ {\ sum_ { i \ neq i^*}(\ frac {1} {\ delta_i} \ log(t) + \ frac {\ sigma_ {max}}} {\ delta_ {i} {1/3} \ log k \ right)$在随机制度中遗憾,其中$ \ sigma_ {max} $是最大的杰出观测值。最后,我们提出了一个下限,与Zimmert和Seldin [2020]在对抗环境中的跳过技术所达到的遗憾上限相匹配。
translated by 谷歌翻译
我们研究了对抗性多臂土匪的元学习。我们考虑在线 - 在线设置,其中玩家(学习者)遇到了一系列多臂强盗情节。根据对手产生的损失,球员的表现被衡量为对每一集中最佳手臂的遗憾。问题的难度取决于对手选择的最佳手臂的经验分布。我们提出了一种算法,可以利用这种经验分布中的非均匀性,并得出与问题有关的遗憾界限。该解决方案包括一个内部学习者,该学习者分别播放每个情节,以及一个外部学习者,它更新了情节之间内部算法的超参数。如果最好的手臂分配远非统一,则它可以通过在每个情节上单独执行的任何在没有元学习的在线执行的在线算法来实现的最佳界限。
translated by 谷歌翻译
我们研究了批量线性上下文匪徒的最佳批量遗憾权衡。对于任何批次数$ M $,操作次数$ k $,时间范围$ t $和维度$ d $,我们提供了一种算法,并证明了其遗憾的保证,这是由于技术原因,具有两阶段表达作为时间的时间$ t $ grose。我们还证明了一个令人奇迹的定理,令人惊讶地显示了在问题参数的“问题参数”中的两相遗憾(最高〜对数因子)的最优性,因此建立了确切的批量后悔权衡。与最近的工作\ citep {ruan2020linear}相比,这表明$ m = o(\ log \ log t)$批次实现无需批处理限制的渐近最佳遗憾的渐近最佳遗憾,我们的算法更简单,更易于实际实现。此外,我们的算法实现了所有$ t \ geq d $的最佳遗憾,而\ citep {ruan2020linear}要求$ t $大于$ d $的不切实际的大多项式。沿着我们的分析,我们还证明了一种新的矩阵集中不平等,依赖于他们的动态上限,这是我们的知识,这是其文学中的第一个和独立兴趣。
translated by 谷歌翻译
在具有分发班次的匪徒中,一个目的是在必要时自动检测奖励分配的未知数字$ L $。虽然这一问题仍然持续多年,但最近奥尔等人的突破。 (2018,2019)提供第一种自适应过程,以保证最佳(动态)后悔$ \ SQRT {lt} $,以便$ t $ rounds,无需了解$ l $。但是,并非所有分类换档都同样严重,例如,假设不会发生最佳的ARM开关,因此我们不能排除遗憾的$ O(\ SQRT {T})$可能仍然可能;换句话说,是否可以实现动态遗憾,以至于仅通过未知数量的严格班次进行最佳缩放?这不幸的是,尽管有各种各样的尝试,但仍然难以难以捉摸(Auer等,2019年,Foster等,2020)。我们在双武装匪徒的情况下解决这个问题:我们推出了一种自适应过程,保证了订单$ \ tilde {o}的动态遗憾(\ sqrt {\ tilde {l} t})$,其中$ \ tilde l \ ll l $捕获未知数量的严重最佳臂更改,即在奖励中具有重要的开关,最后持续到实际需要重启。因此,对于这些严重转变之外的任何数字$ L $的分配转移,我们的程序却遗憾地只是$ \ tilde {o}(\ sqrt {t})\ ll \ tilde {o}(\ sqrt {lt} )$。最后,我们注意到我们对严重转变的概念适用于随机切换匪和对抗性匪徒的经典设置。
translated by 谷歌翻译
我们考虑在线线性优化问题,在每个步骤中,算法在单位球中播放点x_t $,损失$ \ langle c_t,x_t \ rangle $,x_t \ rangle $ for for some成本向量$ c_t $那么透露算法。最近的工作表明,如果算法接收到与$ C_T $之前的invial相关的提示$ h_t $,则它可以达到$ o(\ log t)$的遗憾保证,从而改善标准设置中$ \ theta(\ sqrt {t})$。在这项工作中,我们研究了算法是否真正需要在每次步骤中需要提示的问题。有些令人惊讶的是,我们表明,只需在自然查询模型下只需在$ O(\ SQRT {T})$暗示即可获得$ O(\ log t)$后悔;相比之下,我们还显示$ o(\ sqrt {t})$提示不能优于$ \ omega(\ sqrt {t})$后悔。我们为我们的结果提供了两种应用,以乐观的遗憾界限和弃权问题的乐观遗憾。
translated by 谷歌翻译
我们在存在对抗性腐败的情况下研究线性上下文的强盗问题,在场,每回合的奖励都被对手损坏,腐败级别(即,地平线上的腐败总数)为$ c \ geq 0 $。在这种情况下,最著名的算法受到限制,因为它们要么在计算效率低下,要么需要对腐败做出强烈的假设,或者他们的遗憾至少比没有腐败的遗憾差的$ C $倍。在本文中,为了克服这些局限性,我们提出了一种基于不确定性的乐观原则的新算法。我们算法的核心是加权山脊回归,每个选择动作的重量都取决于其置信度,直到一定的阈值。 We show that for both known $C$ and unknown $C$ cases, our algorithm with proper choice of hyperparameter achieves a regret that nearly matches the lower bounds.因此,我们的算法几乎是两种情况的对数因素的最佳选择。值得注意的是,我们的算法同时对腐败和未腐败的案件($ c = 0 $)实现了近乎最理想的遗憾。
translated by 谷歌翻译
我们研究了一个顺序决策问题,其中学习者面临$ k $武装的随机匪徒任务的顺序。对手可能会设计任务,但是对手受到限制,以在$ m $ and的较小(但未知)子集中选择每个任务的最佳组。任务边界可能是已知的(强盗元学习设置)或未知(非平稳的强盗设置)。我们设计了一种基于Burnit subsodular最大化的减少的算法,并表明,在大量任务和少数最佳武器的制度中,它在两种情况下的遗憾都比$ \ tilde {o}的简单基线要小。 \ sqrt {knt})$可以通过使用为非平稳匪徒问题设计的标准算法获得。对于固定任务长度$ \ tau $的强盗元学习问题,我们证明该算法的遗憾被限制为$ \ tilde {o}(nm \ sqrt {m \ tau}+n^{2/3} m \ tau)$。在每个任务中最佳武器的可识别性的其他假设下,我们显示了一个带有改进的$ \ tilde {o}(n \ sqrt {m \ tau}+n^{1/2} {1/2} \ sqrt的强盗元学习算法{m k \ tau})$遗憾。
translated by 谷歌翻译
在[Mannor和Shamir,Neurips 2011]中提出的图表反馈的强盗问题由指向图$ G =(v,e)$,其中$ v $是强盗臂的集合,并且一旦触发臂一旦触发,所有入射武器都被观察到。基本问题是图形的结构如何影响Min-Max后悔。我们提出了分数分别捕捉上限和下限的美元弱统治号码$ \ delta ^ * $和$ k $ -packing独立号码的概念。我们表明,两种概念通过将它们与弱主导集合的线性程序和其双分数顶点包装组对齐,通过对齐它们通过对齐它们是固有的连接。基于这一联系,我们利用了强大的二元定理来证明一般遗憾的上限$ o \ left(\ left(\ delta ^ * \ log | v | \右)^ {\ frac {1} {3}} t ^ {\ frac {2} {3}} \右)$和一个下限$ \ oomega \ left(\ left(\ delta ^ * / \ alpha \ over)^ {\ frac {1} {3}} t ^ {\ frac {2} {3}}右)$ where $ \ alpha $是双线性程序的完整性差距。因此,我们的界限紧紧达到一个$ \左(\ log | v | \ over)^ {\ frac {1} {3}} $ thace,其中顶点包装问题包括树和图表有限度。此外,我们表明,对于几个特殊的图形,我们可以摆脱$ \左(\ log | v | \右)^ {\ frac {1} {3}} $ factor并建立最佳遗憾。
translated by 谷歌翻译
本文介绍了信息性多臂强盗(IMAB)模型,在每个回合中,玩家选择手臂,观察符号,并以符号的自我信息形式获得未观察到的奖励。因此,手臂的预期奖励是产生其符号的源质量函数的香农熵。玩家的目标是最大程度地提高与武器的熵值相关的预期奖励。在假设字母大小是已知的假设下,为IMAB模型提出了两种基于UCB的算法,该算法考虑了插件熵估计器的偏差。第一种算法在熵估计中乐观地纠正了偏置项。第二算法依赖于数据依赖性置信区间,该置信区间适应具有较小熵值的源。性能保证是通过上限为每种算法的预期遗憾提供的。此外,在Bernoulli案例中,将这些算法的渐近行为与伪遗憾的Lai-Robbins的下限进行了比较。此外,在假设\ textit {cract}字母大小的假设下是未知的,而播放器仅知道其上方的宽度上限,提出了一种基于UCB的算法,在其中,玩家的目的是减少由该算法造成的遗憾。未知的字母尺寸在有限的时间方面。数字结果说明了论文中介绍的算法的预期遗憾。
translated by 谷歌翻译
在古典语境匪徒问题中,在每轮$ t $,学习者观察一些上下文$ c $,选择一些动作$ i $执行,并收到一些奖励$ r_ {i,t}(c)$。我们考虑此问题的变体除了接收奖励$ r_ {i,t}(c)$之外,学习者还要学习其他一些上下文$的$ r_ {i,t}(c')$的值C'$ in设置$ \ mathcal {o} _i(c)$;即,通过在不同的上下文下执行该行动来实现的奖励\ mathcal {o} _i(c)$。这种变体出现在若干战略设置中,例如学习如何在非真实的重复拍卖中出价,最热衷于随着许多平台转换为运行的第一价格拍卖。我们将此问题称为交叉学习的上下文匪徒问题。古典上下围匪徒问题的最佳算法达到$ \ tilde {o}(\ sqrt {ckt})$遗憾针对所有固定策略,其中$ c $是上下文的数量,$ k $的行动数量和$ $次数。我们设计并分析了交叉学习的上下文匪徒问题的新算法,并表明他们的遗憾更好地依赖上下文的数量。在选择动作时学习所有上下文的奖励的完整交叉学习下,即设置$ \ mathcal {o} _i(c)$包含所有上下文,我们显示我们的算法实现后悔$ \ tilde {o}( \ sqrt {kt})$,删除$ c $的依赖。对于任何其他情况,即在部分交叉学习下,$ | \ mathcal {o} _i(c)| <c $ for $(i,c)$,遗憾界限取决于如何设置$ \ mathcal o_i(c)$影响上下文之间的交叉学习的程度。我们从Ad Exchange运行一流拍卖的广告交换中模拟了我们的真实拍卖数据的算法,并表明了它们优于传统的上下文强盗算法。
translated by 谷歌翻译