混合整数凸面和非线性程序MICP和MINLP具有表现力,但需要长时间解决时间。结合了数据驱动方法的求解器启发式方法的最新工作表明,有可能克服此问题,从而可以在更大规模的实际问题上进行应用。为了通过数据驱动的方法在线求解混合企业双线性程序,存在几种配方,包括具有互补约束(MPCC),混合智能编程(MIP)的数学编程。在这项工作中,我们将这些数据驱动方案的性能基于具有离散模式开关和避免碰撞限制的书架组织问题的性能。将成功率,最佳成本和解决时间与非DATA驱动方法进行比较。我们提出的方法被证明是用于书架问题的机器人臂的高级计划者。
translated by 谷歌翻译
具有单个刚体模型的凸模型预测控制(MPC)在真实的腿部机器人上表现出强烈的性能。但是,凸MPC受其假设的限制,例如旋转角度和预定义的步态,从而限制了潜在溶液的丰富性。我们删除了这些假设,并使用单个刚体模型解决了完整的混合企业非凸编程。我们首先离线收集预处理问题的数据集,然后学习问题解决方案图以快速解决MPC的优化。如果可以找到温暖的启动,则可以接近全球最优性解决离线问题。通过根据初始条件产生各种步态和行为来测试所提出的控制器。硬件测试根据传感器反馈演示了在线步态生成和适应性超过50 Hz。
translated by 谷歌翻译
在本文中,我们为LIMM介绍了一个运动计划者,该计划者是一个模块化的多模式包装输送平台。单个limms单元是一个机器人,它可以作为手臂或腿部操作,具体取决于它的附加方式和内容,例如,当操纵器固定在送货车内的墙壁上时,或将4个附加在盒子附加到盒子的墙壁上时。当每个限制的角色都可以扮演截然不同的角色时,在多个lim上进行协调,很快就会变得复杂。对于这样一个计划问题,我们首先构成了必要的逻辑和约束。然后,该公式将用于技能探索,并可以在精炼后在硬件上实现。为了解决此优化问题,我们使用乘数的交替方向方法(ADMM)。在各种情况下,对拟议的规划师进行了实验,该计划显示了LIMMS进入不同模式或组合的能力,以实现其移动运输箱的目标。
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
本文提出了一种使用蒙特卡洛树搜索(MCT)来查找接触序列和有效的基于ADMM的轨迹优化算法的有效方法来进行对象操纵计划,以评估候选接触序列的动态可行性。为了加速MCT,我们提出了一种方法来学习一个目标条件的政策值网络,用于将搜索引导到有前途的节点。此外,操纵特定的启发式方法可以大大减少搜索空间。物理模拟器中的系统对象操纵实验证明了我们方法的效率。特别是,由于学识渊博的政策价值网络,我们的方法对长期操纵序列有利,从而大大提高了计划的成功率。
translated by 谷歌翻译
尽管腿部机器人的运动计划表现出了巨大的成功,但具有灵活的多指抓握的腿部机器人的运动计划尚未成熟。我们提出了一个有效的运动计划框架,用于同时解决运动(例如,质心动力学),抓地力(例如,贴片接触)和触点(例如步态)问题。为了加速计划过程,我们建议基于乘数的交替方向方法(ADMM)提出分布式优化框架,以求解原始的大型混合构成非整数非线性编程(MINLP)。最终的框架使用混合构成二次编程(MIQP)来求解联系人和非线性编程(NLP)来求解非线性动力学,这些动力学在计算方面更可行,对参数较不敏感。此外,我们通过微蜘蛛抓手从极限表面明确执行补丁接触约束。我们在硬件实验中演示了我们提出的框架,这表明多限制机器人能够实现各种动作,包括在斜坡角度45 {\ deg}的情况下进行较短的计划时间。
translated by 谷歌翻译
许多数值优化技术的收敛性对提供给求解器的初始猜测高度敏感。我们提出了一种基于张量方法的方法,以初始化靠近全局Optima的现有优化求解器。该方法仅使用成本函数的定义,不需要访问任何良好解决方案的数据库。我们首先将成本函数(这是任务参数和优化变量的函数)转换为概率密度函数。与将任务参数设置为常数的现有方法不同,我们将它们视为另一组随机变量,并使用替代概率模型近似任务参数的关节概率分布和优化变量。对于给定的任务,我们就给定的任务参数从条件分布中生成样本,并将其用作优化求解器的初始化。由于调节和来自任意密度函数的调节和采样具有挑战性,因此我们使用张量列车分解来获得替代概率模型,我们可以从中有效地获得条件模型和样品。该方法可以为给定任务产生来自不同模式的多个解决方案。我们首先通过将其应用于各种具有挑战性的基准函数来评估该方法以进行数值优化,这些功能很难使用基于梯度的优化求解器以幼稚的初始化来求解,这表明所提出的方法可以生成靠近全局优化的样品,并且来自多种模式。 。然后,我们通过将所提出的方法应用于7-DOF操纵器来证明框架的通用性及其与机器人技术的相关性。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
通常,地形几何形状是非平滑的,非线性的,非凸的,如果通过以机器人为中心的视觉单元感知,则似乎部分被遮住且嘈杂。这项工作介绍了能够实时处理上述问题的完整控制管道。我们制定了一个轨迹优化问题,该问题可以在基本姿势和立足点上共同优化,但要遵守高度图。为了避免收敛到不良的本地Optima,我们部署了逐步的优化技术。我们嵌入了一个紧凑的接触式自由稳定性标准,该标准与非平板地面公式兼容。直接搭配用作转录方法,导致一个非线性优化问题,可以在少于十毫秒内在线解决。为了在存在外部干扰的情况下增加鲁棒性,我们用动量观察者关闭跟踪环。我们的实验证明了爬楼梯,踏上垫脚石上的楼梯,并利用各种动态步态在缝隙上。
translated by 谷歌翻译
有效的轨迹优化对于避免非结构化环境中的碰撞至关重要,但在解决方案中具有速度和质量仍然具有挑战性。一个原因是二阶最优性需要计算Hessian矩阵,这些矩阵可以使用$ O(n ^ 2)$与航点的数量一起生长。减少航点可以二次降低计算时间。不幸的是,更少的航点导致较低的质量轨迹,可能无法避免碰撞。要拥有密集的航点和计算时间,我们从最近的共识优化研究中获取了灵感,并提出了分布式配方的搭配轨迹优化。它将长期轨迹分成几个段,其中每个段都成为几个航路点的子问题。这些子问题是经典的,但并行解决,并且解决方案与共识约束融合到单个轨迹中,这通过共识更新来强制段的连续性。利用该方案,二次复杂性分布在每个段中,并通过更密集的航点来解决高质量的轨迹。此外,所提出的配方可以使用任何现有的轨迹优化器来解决子问题。我们比较我们对领先运动规划算法的轨迹分裂的实现的性能,并展示了我们方法的改进的计算效率。
translated by 谷歌翻译
该论文提出了一个计划者,以使用质心动力学和人形机器人的完整运动学来产生步行轨迹。机器人与行走表面之间的相互作用是通过新条件明确建模的,即\ emph {动态互补性约束}。该方法不需要预定义的接触序列,并自动生成脚步。我们通过一组任务来表征机器人控制目标,并通过解决最佳控制问题来解决它。我们表明,可以通过指定最小的参考集,例如恒定所需的质量速度中心和地面上的参考点来自动实现行走运动。此外,我们分析了接触模型选择如何影响计算时间。我们通过为人形机器人ICUB生成和测试步行轨迹来验证该方法。
translated by 谷歌翻译
解决逆运动学问题是针对清晰机器人的运动计划,控制和校准的基本挑战。这些机器人的运动学模型通常通过关节角度进行参数化,从而在机器人构型和最终效果姿势之间产生复杂的映射。或者,可以使用机器人附加点之间的不变距离来表示运动学模型和任务约束。在本文中,我们将基于距离的逆运动学的等效性和大量铰接式机器人和任务约束的距离几何问题进行形式化。与以前的方法不同,我们使用距离几何形状和低级别矩阵完成之间的连接来通过局部优化完成部分欧几里得距离矩阵来找到逆运动学解决方案。此外,我们用固定级革兰氏矩阵的Riemannian歧管来参数欧几里得距离矩阵的空间,从而使我们能够利用各种成熟的Riemannian优化方法。最后,我们表明,绑定的平滑性可用于生成知情的初始化,而无需大量的计算开销,从而改善收敛性。我们证明,我们的逆运动求解器比传统技术获得更高的成功率,并且在涉及许多工作区约束的问题上大大优于它们。
translated by 谷歌翻译
混合成员非线性优化是具有组合结构和非线性的广泛问题。典型的精确方法将分支和结合的方案与放松和分离子例程相结合。我们研究了基于此设置的Frank-Wolfe算法的错误自适应一阶方法的属性和优势,仅需要梯度甲骨文来实现目标函数和可行集合上的线性优化。特别是,我们将研究通过分支和结合方法进行优化的算法后果,在这种方法中,由于Frank-Wolfe线性甲骨文而引起的混合构件的凸面上的子问题与解决连续放松上的子问题相比同一组。这种新颖的方法在处理多面体约束的单个表示时计算可行的解决方案,利用了没有外近似方案的混合智能编程(MIP)求解器的全部范围。
translated by 谷歌翻译
最小的平方和群集(MSSC)或K-Means型聚类,传统上被认为是无监督的学习任务。近年来,使用背景知识来提高集群质量,促进聚类过程的可解释性已成为数学优化和机器学习研究的热门研究课题。利用数据群集中的背景信息的问题称为半监督或约束群集。在本文中,我们为半监控MSSC提供了一种新的分支和绑定算法,其中背景知识被包含为成对必须 - 链接和无法链接约束。对于较低的界限,我们解决了MSSC离散优化模型的Semidefinite编程宽松,并使用了用于加强界限的纤维平面程序。相反,通过使用整数编程工具,我们提出了将K-Means算法适应受约束的情况。这是第一次,所提出的全局优化算法有效地管理,以解决现实世界的情况,最高可达800个数据点,具有必要的必须 - 链接和无法链接约束以及通用数量的功能。这个问题大小大约比最先进的精确算法解决的实例大约四倍。
translated by 谷歌翻译
我们考虑非线性优化问题,涉及神经网络代表代理模型。我们首先展示了如何直接将神经网络评估嵌入优化模型中,突出难以防止收敛的方法,然后表征这些模型的平稳性。然后,我们在具有Relu激活的前馈神经网络的特定情况下存在两种替代配方,其具有recu激活:作为混合整数优化问题,作为具有互补限制的数学程序。对于后一种制剂,我们证明了在该问题的点处的有同性,对应于嵌入式制剂的实质性。这些配方中的每一个都可以用最先进的优化方法来解决,并且我们展示了如何为这些方法获得良好的初始可行解决方案。我们将三种实际应用的配方进行比较,在燃烧发动机的设计和控制中产生的三种实际应用,在对分类器网络的对抗攻击中产生的产生,以及在油井网中的最佳流动确定。
translated by 谷歌翻译
在确定性优化中,通常假定问题的所有参数都是固定和已知的。但是,实际上,某些参数可能是未知的先验参数,但可以从历史数据中估算。典型的预测 - 优化方法将预测和优化分为两个阶段。最近,端到端的预测到优化已成为有吸引力的替代方法。在这项工作中,我们介绍了PYEPO软件包,这是一个基于Pytorch的端到端预测,然后在Python中进行了优化的库。据我们所知,PYEPO(发音为“带有静音” n“”的“菠萝”)是线性和整数编程的第一个通用工具,具有预测的目标函数系数。它提供了两种基本算法:第一种基于Elmachtoub&Grigas(2021)的开创性工作的凸替代损失函数,第二个基于Vlastelica等人的可区分黑盒求解器方法。 (2019)。 PYEPO提供了一个简单的接口,用于定义新的优化问题,最先进的预测 - 优化训练算法,自定义神经网络体系结构的使用以及端到端方法与端到端方法与与端到端方法的比较两阶段的方法。 PYEPO使我们能够进行一系列全面的实验,以比较沿轴上的多种端到端和两阶段方法,例如预测准确性,决策质量和运行时间,例如最短路径,多个背包和旅行等问题销售人员问题。我们讨论了这些实验中的一些经验见解,这些见解可以指导未来的研究。 PYEPO及其文档可在https://github.com/khalil-research/pyepo上找到。
translated by 谷歌翻译
最近已扩展了最小方形聚类(MSSC)或K-均值类型聚类的最小总和,以利用每个群集的基数的先验知识。这种知识用于提高性能以及解决方案质量。在本文中,我们提出了一种基于分支和切割技术的精确方法,以解决基数受限的MSSC。对于下边界的例程,我们使用Rujeerapaiboon等人最近提出的半决赛编程(SDP)放松。 [Siam J. Optim。 29(2),1211-1239,(2019)]。但是,这种放松只能用于小型实例中的分支和切割方法。因此,我们得出了一种新的SDP松弛,该松弛随着实例大小和簇的数量更好。在这两种情况下,我们都通过添加多面体切割来增强结合。从量身定制的分支策略中受益,该策略会实施成对的约束,我们减少了儿童节点中出现的问题的复杂性。相反,对于上限,我们提出了一个本地搜索过程,该过程利用在每个节点上求解的SDP松弛的解。计算结果表明,所提出的算法在全球范围内首次求解了大小的现实实例,比通过最新精确方法求解的算法大10倍。
translated by 谷歌翻译
由于固有的DNN预测误差,确保解决方案可行性是开发用于解决受约束优化问题的深度神经网络(DNN)方案的关键挑战。在本文中,我们提出了一种“预防性学习”的框架,以系统地保证DNN解决方案可行性的凸起约束和一般客观函数的问题。我们首先应用预测和重建设计,不仅保证平等约束,还可以利用它们来减少DNN预测的变量的数量。然后,作为关键方法贡献,我们系统地校准了DNN训练中使用的不等式约束,从而预测预测误差并确保所得到的解决方案仍然可行。我们表征校准量大和DNN尺寸,足以确保通用可行性。我们提出了一种新的敌对样本意识到培训算法,以改善DNN的最优性能而不牺牲可行性保证。总的来说,该框架提供了两个DNN。表征足够的DNN大小的第一个可以保证通用可行性,而来自所提出的培训算法的另一个进一步提高了最优性并同时保持DNN的通用可行性。我们应用预防性学习框架来开发Deepopf +,以解决网格运行中的基本DC最佳功率流量问题。它在确保在轻负载和重载制度中的可行性和获得一致的理想加速性能时,它可以改善现有的基于DNN的方案。仿真结果对IEEE案例-30 / 118/300测试用例显示DeepoPF +与最优性损失的最优损失和最高幅度计算加速度为100 \%$ 0.5%的可行解决方案,相比之下艺术迭代求解器。
translated by 谷歌翻译
增强学习(RL)在接触式操纵中的经验成功(RL)从基于模型的角度来理解了很多待理解,其中关键困难通常归因于(i)触点模式的爆炸,(ii)僵硬,非平滑接触动力学和由此产生的爆炸 /不连续梯度,以及(iii)计划问题的非转换性。 RL的随机性质通过有效采样和平均接触模式来解决(i)和(ii)。另一方面,基于模型的方法通过分析平滑接触动力学来解决相同的挑战。我们的第一个贡献是建立两种方法的简单系统方法的理论等效性,并在许多复杂示例上提供定性和经验的等效性。为了进一步减轻(II),我们的第二个贡献是凸面的凸面,可区分和准动力的触点动力学表述,这两个方案都可以平滑方案,并且通过实验证明了对接触富含接触的计划非常有效。我们的最终贡献解决了(III),在其中我们表明,当通过平滑度抽取接触模式时,基于经典的运动计划算法在全球计划中可以有效。将我们的方法应用于具有挑战性的接触式操纵任务的集合中,我们证明了基于模型的有效运动计划可以实现与RL相当的结果,而计算却大大较少。视频:https://youtu.be/12ew4xc-vwa
translated by 谷歌翻译