Scenarios requiring humans to choose from multiple seemingly optimal actions are commonplace, however standard imitation learning often fails to capture this behavior. Instead, an over-reliance on replicating expert actions induces inflexible and unstable policies, leading to poor generalizability in an application. To address the problem, this paper presents the first imitation learning framework that incorporates Bayesian variational inference for learning flexible non-parametric multi-action policies, while simultaneously robustifying the policies against sources of error, by introducing and optimizing disturbances to create a richer demonstration dataset. This combinatorial approach forces the policy to adapt to challenging situations, enabling stable multi-action policies to be learned efficiently. The effectiveness of our proposed method is evaluated through simulations and real-robot experiments for a table-sweep task using the UR3 6-DOF robotic arm. Results show that, through improved flexibility and robustness, the learning performance and control safety are better than comparison methods.
translated by 谷歌翻译
Humans demonstrate a variety of interesting behavioral characteristics when performing tasks, such as selecting between seemingly equivalent optimal actions, performing recovery actions when deviating from the optimal trajectory, or moderating actions in response to sensed risks. However, imitation learning, which attempts to teach robots to perform these same tasks from observations of human demonstrations, often fails to capture such behavior. Specifically, commonly used learning algorithms embody inherent contradictions between the learning assumptions (e.g., single optimal action) and actual human behavior (e.g., multiple optimal actions), thereby limiting robot generalizability, applicability, and demonstration feasibility. To address this, this paper proposes designing imitation learning algorithms with a focus on utilizing human behavioral characteristics, thereby embodying principles for capturing and exploiting actual demonstrator behavioral characteristics. This paper presents the first imitation learning framework, Bayesian Disturbance Injection (BDI), that typifies human behavioral characteristics by incorporating model flexibility, robustification, and risk sensitivity. Bayesian inference is used to learn flexible non-parametric multi-action policies, while simultaneously robustifying policies by injecting risk-sensitive disturbances to induce human recovery action and ensuring demonstration feasibility. Our method is evaluated through risk-sensitive simulations and real-robot experiments (e.g., table-sweep task, shaft-reach task and shaft-insertion task) using the UR5e 6-DOF robotic arm, to demonstrate the improved characterisation of behavior. Results show significant improvement in task performance, through improved flexibility, robustness as well as demonstration feasibility.
translated by 谷歌翻译
Humans intuitively solve tasks in versatile ways, varying their behavior in terms of trajectory-based planning and for individual steps. Thus, they can easily generalize and adapt to new and changing environments. Current Imitation Learning algorithms often only consider unimodal expert demonstrations and act in a state-action-based setting, making it difficult for them to imitate human behavior in case of versatile demonstrations. Instead, we combine a mixture of movement primitives with a distribution matching objective to learn versatile behaviors that match the expert's behavior and versatility. To facilitate generalization to novel task configurations, we do not directly match the agent's and expert's trajectory distributions but rather work with concise geometric descriptors which generalize well to unseen task configurations. We empirically validate our method on various robot tasks using versatile human demonstrations and compare to imitation learning algorithms in a state-action setting as well as a trajectory-based setting. We find that the geometric descriptors greatly help in generalizing to new task configurations and that combining them with our distribution-matching objective is crucial for representing and reproducing versatile behavior.
translated by 谷歌翻译
机器人的共同适应一直是一项长期的研究努力,其目的是将系统的身体和行为适应给定的任务,灵感来自动物的自然演变。共同适应有可能消除昂贵的手动硬件工程,并提高系统性能。共同适应的标准方法是使用奖励功能来优化行为和形态。但是,众所周知,定义和构建这种奖励功能是困难的,并且通常是一项重大的工程工作。本文介绍了关于共同适应问题的新观点,我们称之为共同构图:寻找形态和政策,使模仿者可以紧密匹配演示者的行为。为此,我们提出了一种通过匹配示威者的状态分布来适应行为和形态的共同模拟方法。具体而言,我们专注于两种代理之间的状态和动作空间不匹配的挑战性情况。我们发现,共同映射会增加各种任务和设置的行为相似性,并通过将人的步行,慢跑和踢到模拟的人形生物转移来证明共同映射。
translated by 谷歌翻译
生成的对抗性模仿学习(GAIL)可以学习政策,而无需明确定义示威活动的奖励功能。盖尔有可能学习具有高维观测值的政策,例如图像。通过将Gail应用于真正的机器人,也许可以为清洗,折叠衣服,烹饪和清洁等日常活动获得机器人政策。但是,由于错误,人类示范数据通常是不完美的,这会降低由此产生的政策的表现。我们通过关注以下功能来解决此问题:1)许多机器人任务是目标任务,而2)在演示数据中标记此类目标状态相对容易。考虑到这些,本文提出了目标感知的生成对抗性模仿学习(GA-GAIL),该学习通过引入第二个歧视者来训练政策,以与指示演示数据的第一个歧视者并行区分目标状态。这扩展了一个标准的盖尔框架,即使通过促进实现目标状态的目标状态歧视者,甚至可以从不完美的演示中学习理想的政策。此外,GA-GAIL采用熵最大化的深层P-NETWORK(EDPN)作为发电机,该发电机考虑了策略更新中的平滑度和因果熵,以从两个歧视者中获得稳定的政策学习。我们提出的方法成功地应用于两项真正的布料操作任务:将手帕翻过来折叠衣服。我们确认它在没有特定特定任务奖励功能设计的情况下学习了布料操作政策。实际实验的视频可在https://youtu.be/h_nii2ooure上获得。
translated by 谷歌翻译
在本文中,我们讨论了通过模仿教授双人操作任务的框架。为此,我们提出了一种从人类示范中学习合规和接触良好的机器人行为的系统和算法。提出的系统结合了入学控制和机器学习的见解,以提取控制政策,这些政策可以(a)从时空和空间中恢复并适应各种干扰,同时(b)有效利用与环境的物理接触。我们使用现实世界中的插入任务证明了方法的有效性,该任务涉及操纵对象和插入钉之间的多个同时接触。我们还研究了为这种双人设置收集培训数据的有效方法。为此,我们进行了人类受试者的研究,并分析用户报告的努力和精神需求。我们的实验表明,尽管很难提供,但在遥控演示中可用的其他力/扭矩信息对于阶段估计和任务成功至关重要。最终,力/扭矩数据大大提高了操纵鲁棒性,从而在多点插入任务中获得了90%的成功率。可以在https://bimanualmanipulation.com/上找到代码和视频
translated by 谷歌翻译
在本文中,我们关注将基于能量的模型(EBM)作为运动优化的指导先验的问题。 EBM是一组神经网络,可以用合适的能量函数参数为参数的GIBBS分布来表示表达概率密度分布。由于其隐含性,它们可以轻松地作为优化因素或运动优化问题中的初始采样分布整合在一起,从而使它们成为良好的候选者,以将数据驱动的先验集成在运动优化问题中。在这项工作中,我们提出了一组所需的建模和算法选择,以使EBMS适应运动优化。我们调查了将其他正规化器在学习EBM中的好处,以将它们与基于梯度的优化器一起使用,并提供一组EBM架构,以学习用于操纵任务的可通用分布。我们提出了多种情况,可以将EBM集成以进行运动优化,并评估学到的EBM的性能,以指导模拟和真实机器人实验的指导先验。
translated by 谷歌翻译
Standard imitation learning can fail when the expert demonstrators have different sensory inputs than the imitating agent. This is because partial observability gives rise to hidden confounders in the causal graph. We break down the space of confounded imitation learning problems and identify three settings with different data requirements in which the correct imitation policy can be identified. We then introduce an algorithm for deconfounded imitation learning, which trains an inference model jointly with a latent-conditional policy. At test time, the agent alternates between updating its belief over the latent and acting under the belief. We show in theory and practice that this algorithm converges to the correct interventional policy, solves the confounding issue, and can under certain assumptions achieve an asymptotically optimal imitation performance.
translated by 谷歌翻译
在移动操作(MM)中,机器人可以在内部导航并与其环境进行交互,因此能够完成比仅能够导航或操纵的机器人的更多任务。在这项工作中,我们探讨如何应用模仿学习(IL)来学习MM任务的连续Visuo-Motor策略。许多事先工作表明,IL可以为操作或导航域训练Visuo-Motor策略,但很少有效应用IL到MM域。这样做是挑战的两个原因:在数据方面,当前的接口使得收集高质量的人类示范困难,在学习方面,有限数据培训的政策可能会在部署时遭受协变速转变。为了解决这些问题,我们首先提出了移动操作Roboturk(Momart),这是一种新颖的遥控框架,允许同时导航和操纵移动操纵器,并在现实的模拟厨房设置中收集一类大规模的大规模数据集。然后,我们提出了一个学习错误检测系统来解决通过检测代理处于潜在故障状态时的协变量转变。我们从该数据中培训表演者的IL政策和错误探测器,在专家数据培训时,在多个多级任务中达到超过45%的任务成功率和85%的错误检测成功率。 CodeBase,DataSets,Visualization,以及更多可用的https://sites.google.com/view/il-for-mm/home。
translated by 谷歌翻译
许多机器人任务由在高度复杂的环境中由许多时间相关的子任务组成。重要的是要通过审议时间抽象来有效地解决问题来发现情境意图和适当的行动。为了了解与不断变化的任务动态分离的意图,我们将基于授权的正则化技术扩展到基于生成对抗网络框架的多个任务的情况。在具有未知动态的多任务环境下,我们专注于从未标记的专家示例中学习奖励和政策。在这项研究中,我们将情境增强权定义为相互信息的最大信息,代表了在某个状态和子任务中如何影响未来的行动。我们提出的方法得出了情境相互信息的变异下限,以优化它。我们同时通过在目标函数中添加引起的术语来同时学习可转让的多任务奖励功能和策略。通过这样做,多任务奖励功能有助于学习对环境变化的强大政策。我们验证了我们在多任务学习和多任务转移学习方面的优势。我们证明我们提出的方法具有随机性和变化的任务动态的鲁棒性。最后,我们证明我们的方法的性能和数据效率明显优于各种基准上的现有模仿学习方法。
translated by 谷歌翻译
多模式演示为机器人提供了大量信息,以使世界有意义。但是,当从人类示威中学习感觉运动控制政策时,这种丰度可能并不总是会导致良好的表现。无关的数据模式可能导致状态过度规格,在该状态中包含的模式不仅可以在决策中无用,而且可以改变跨环境的数据分布。州过度规格会导致诸如学习的政策之类的问题,而不是在培训数据分布之外推广。在这项工作中,我们提出了掩盖的模仿学习(MIL),以选择性地使用信息方式来解决状态过度指定。具体来说,我们设计了带有二进制掩码的蒙版策略网络,以阻止某些方式。我们开发了一种双层优化算法,该算法可以学习此面具以准确过滤过度指定的模态。我们从经验上证明,使用Robomimic数据集在包括Mujoco和机器人ARM环境在内的模拟域中的基线算法均优于基线算法,并有效地在收集在真实机器人上收集的多模式数据集中有效地恢复了环境不变的模式。我们的项目网站在以下网址介绍了我们的结果的补充详细信息和视频:https://tinyurl.com/masked-il
translated by 谷歌翻译
从先前收集的专家数据数据集中学习提供了有望在没有不安全和昂贵的在线探索的情况下获取机器人政策。但是,一个主要的挑战是培训数据集中的各州与在测试时学到的政策访问的国家之间的分配转移。尽管先前的工作主要研究了在离线培训期间政策引起的分配变化,但研究在部署时间从分布状态恢复的问题还不是很好。我们通过引入一项恢复政策来减轻部署时间的分配转变,该恢复政策将代理人带回培训歧管,每当由于外部扰动而逐渐退出分布状态,例如。恢复策略依赖于训练数据密度的近似值和学习的模棱两可的映射,该映射将视觉观测映射到一个潜在空间中,在该空间中,翻译与机器人动作相对应。我们通过在真正的机器人平台上进行了几个操纵实验来证明所提出的方法的有效性。我们的结果表明,恢复策略使代理可以完成任务,而行为克隆仅由于分配转移问题而失败。
translated by 谷歌翻译
有效推论是一种数学框架,它起源于计算神经科学,作为大脑如何实现动作,感知和学习的理论。最近,已被证明是在不确定性下存在国家估算和控制问题的有希望的方法,以及一般的机器人和人工代理人的目标驱动行为的基础。在这里,我们审查了最先进的理论和对国家估计,控制,规划和学习的积极推断的实现;描述当前的成就,特别关注机器人。我们展示了相关实验,以适应,泛化和稳健性而言说明其潜力。此外,我们将这种方法与其他框架联系起来,并讨论其预期的利益和挑战:使用变分贝叶斯推理具有功能生物合理性的统一框架。
translated by 谷歌翻译
Large-scale data is an essential component of machine learning as demonstrated in recent advances in natural language processing and computer vision research. However, collecting large-scale robotic data is much more expensive and slower as each operator can control only a single robot at a time. To make this costly data collection process efficient and scalable, we propose Policy Assisted TeleOperation (PATO), a system which automates part of the demonstration collection process using a learned assistive policy. PATO autonomously executes repetitive behaviors in data collection and asks for human input only when it is uncertain about which subtask or behavior to execute. We conduct teleoperation user studies both with a real robot and a simulated robot fleet and demonstrate that our assisted teleoperation system reduces human operators' mental load while improving data collection efficiency. Further, it enables a single operator to control multiple robots in parallel, which is a first step towards scalable robotic data collection. For code and video results, see https://clvrai.com/pato
translated by 谷歌翻译
在机器人技术中,以可扩展的方式构建各种操纵技巧的曲目仍然是一个未解决的挑战。解决这一挑战的一种方法是在非结构化的人类游戏中,人类在环境中自由运作以实现未指定的目标。游戏是一种简单且廉价的方法,用于收集各种用户演示,并在环境中进行广泛的状态和目标覆盖。由于这种不同的覆盖范围,现有的从游戏中学习的方法对离线数据分布的在线政策偏差更加牢固。但是,这些方法通常很难在场景变化和具有挑战性的操纵基础上学习,部分原因是将复杂的行为与他们引起的场景变化联系起来。我们的见解是,以对象数据为中心的观点可以帮助将人类的行为和所产生的环境变化联系起来,从而改善多任务策略学习。在这项工作中,我们构建了一个潜在空间来建模对象\ textit {proffances} - 在环境中定义其用途的对象的属性,然后学习实现所需负担的策略。通过对可变范围任务进行建模和预测所需的负担,我们的方法通过以对象为中心的游戏(PLATO)预测潜在的负担,在2D和3D对象操纵模拟和现实世界环境中,在复杂的操纵任务上的现有方法优于现有方法互动。可以在我们的网站上找到视频:https://tinyurl.com/4U23HWFV
translated by 谷歌翻译
我们提出了贝叶斯团队模仿学习者(BTIL),这是一种模仿学习算法,以模拟马尔可夫域中执行顺序任务的团队的行为。与现有的多机构模仿学习技术相反,BTIL明确模型并渗透了团队成员的时间变化的心理状态,从而从次优的团队合作的演示中实现了分散的团队政策的学习。此外,为了允许从小型数据集中进行样本和标签有效的政策学习,Btil采用了贝叶斯的角度,并且能够从半监督的示范中学习。我们证明并基准了BTIL在合成多代理任务以及人类代理团队工作的新型数据集上的性能。我们的实验表明,尽管团队成员(随时间变化且可能未对准)精神状态对其行为的影响,BTIL可以成功地从示威中学习团队政策。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
学识渊博的视觉运动策略已取得了相当大的成功,作为用于机器人操纵的传统手工制作框架的替代方法。令人惊讶的是,这些方法向多视域域的扩展相对尚未探索。可以在移动操作平台上部署成功的多视策略,从而使机器人可以完成任务,无论其场景的看法如何。在这项工作中,我们证明可以通过从各种观点收集数据来通过模仿学习来找到多览策略。我们通过在模拟环境和真实的移动操纵平台上学习完成几个具有挑战性的多阶段和接触任务来说明该方法的一般适用性。此外,与从固定角度收集的数据相比,我们分析了我们的政策,以确定从多视图数据中学习的好处。我们表明,与使用等效量的固定视图数据相比,从多视图数据中学习对固定视图任务的惩罚很少(如果有的话)。最后,我们研究了多视图和固定视图策略所学的视觉特征。我们的结果表明,多视图策略隐含地学习识别与空间相关的特征。
translated by 谷歌翻译
策略搜索和模型预测控制〜(MPC)是机器人控制的两个不同范式:策略搜索具有使用经验丰富的数据自动学习复杂策略的强度,而MPC可以使用模型和轨迹优化提供最佳控制性能。开放的研究问题是如何利用并结合两种方法的优势。在这项工作中,我们通过使用策略搜索自动选择MPC的高级决策变量提供答案,这导致了一种新的策略搜索 - 用于模型预测控制框架。具体地,我们将MPC作为参数化控制器配制,其中难以优化的决策变量表示为高级策略。这种制定允许以自我监督的方式优化政策。我们通过专注于敏捷无人机飞行中的具有挑战性的问题来验证这一框架:通过快速的盖茨飞行四轮车。实验表明,我们的控制器在模拟和现实世界中实现了鲁棒和实时的控制性能。拟议的框架提供了合并学习和控制的新视角。
translated by 谷歌翻译
KL-regularized reinforcement learning from expert demonstrations has proved successful in improving the sample efficiency of deep reinforcement learning algorithms, allowing them to be applied to challenging physical real-world tasks. However, we show that KL-regularized reinforcement learning with behavioral reference policies derived from expert demonstrations can suffer from pathological training dynamics that can lead to slow, unstable, and suboptimal online learning. We show empirically that the pathology occurs for commonly chosen behavioral policy classes and demonstrate its impact on sample efficiency and online policy performance. Finally, we show that the pathology can be remedied by non-parametric behavioral reference policies and that this allows KL-regularized reinforcement learning to significantly outperform state-of-the-art approaches on a variety of challenging locomotion and dexterous hand manipulation tasks.
translated by 谷歌翻译