本文提出了一种新的方法,用于可重新配置智能表面(RIS)和发射器 - 接收器对的联合设计,其作为一组深神经网络(DNN)培训,以优化端到端通信性能接收者。 RIS是一种软件定义的单位单元阵列,其可以根据散射和反射轮廓来控制,以将来自发射机的传入信号集中到接收器。 RIS的好处是通过克服视线(LOS)链路的物理障碍来提高无线通信的覆盖率和光谱效率。 RIS波束码字(从预定义的码本)的选择过程被配制为DNN,而发射器 - 接收器对的操作被建模为两个DNN,一个用于编码器(在发射器)和另一个一个用于AutoEncoder的解码器(在接收器处),通过考虑包括由in之间引起的频道效应。底层DNN共同训练,以最小化接收器处的符号误差率。数值结果表明,所提出的设计在各种基线方案中实现了误差性能的主要增益,其中使用了没有RIS或者将RIS光束的选择与发射器 - 接收器对的设计分离。
translated by 谷歌翻译
通过从大型天线移动到用于软件定义的无线系统的天线表面,可重新配置的智能表面(RISS)依赖于单元电池的阵列,以控制信号的散射和反射轮廓,减轻传播损耗和多路径衰减,从而改善覆盖范围和光谱效率。在本文中,在RIS存在下考虑了隐蔽的通信。虽然RIS升高了持续的传动,但是预期接收器和窃听者都可以单独尝试使用自己的深神经网络(DNN)分类器来检测该传输。 RIS交互向量是通过平衡将发送信号聚焦到接收器的两个(潜在冲突)目标而设计的,并将发送的信号远离窃听器。为了提高封面通信,对发射机的信号添加对抗扰动以欺骗窃听器的分类器,同时保持对接收器的影响。来自不同网络拓扑的结果表明,可以共同设计对抗扰动和RIS交互向量,以有效地提高接收器处的信号检测精度,同时降低窃听器的检测精度以实现封面通信。
translated by 谷歌翻译
Effective and adaptive interference management is required in next generation wireless communication systems. To address this challenge, Rate-Splitting Multiple Access (RSMA), relying on multi-antenna rate-splitting (RS) at the transmitter and successive interference cancellation (SIC) at the receivers, has been intensively studied in recent years, albeit mostly under the assumption of perfect Channel State Information at the Receiver (CSIR) and ideal capacity-achieving modulation and coding schemes. To assess its practical performance, benefits, and limits under more realistic conditions, this work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods, which aims to unite the simple structure of the conventional SIC receiver and the robustness and model agnosticism of deep learning techniques. The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS), and average training overhead. Also, a comparison with the SIC receiver, with perfect and imperfect CSIR, is given. Results reveal that the MBDL receiver outperforms by a significant margin the SIC receiver with imperfect CSIR, due to its ability to generate on demand non-linear symbol detection boundaries in a pure data-driven manner.
translated by 谷歌翻译
在多输入多输出(MIMO)系统中使用深度自动码器(DAE)进行端到端通信,是一种具有重要潜力的新概念。在误码率(BER)方面,已示出DAE-ADED MIMO以占地识别的奇异值分解(SVD)为基础的预编码MIMO。本文提出将信道矩阵的左右奇异矢量嵌入到DAE编码器和解码器中,以进一步提高MIMO空间复用的性能。 SVD嵌入式DAE主要优于BER的理论线性预编码。这是显着的,因为它表明所提出的DAES通过将通信系统视为单个端到端优化块来超出当前系统设计的极限。基于仿真结果,在SNR = 10dB,所提出的SVD嵌入式设计可以实现近10美元,并将BER减少至少10次,而没有SVD,相比增长了18倍的增长率最高18倍具有理论线性预编码。我们将这一点归因于所提出的DAE可以将输入和输出与具有有限字母输入的自适应调制结构匹配。我们还观察到添加到DAE的剩余连接进一步提高了性能。
translated by 谷歌翻译
Communications systems to date are primarily designed with the goal of reliable (error-free) transfer of digital sequences (bits). Next generation (NextG) communication systems are beginning to explore shifting this design paradigm of reliably decoding bits to reliably executing a given task. Task-oriented communications system design is likely to find impactful applications, for example, considering the relative importance of messages. In this paper, a wireless signal classification is considered as the task to be performed in the NextG Radio Access Network (RAN) for signal intelligence and spectrum awareness applications such as user equipment (UE) identification and authentication, and incumbent signal detection for spectrum co-existence. For that purpose, edge devices collect wireless signals and communicate with the NextG base station (gNodeB) that needs to know the signal class. Edge devices may not have sufficient processing power and may not be trusted to perform the signal classification task, whereas the transfer of the captured signals from the edge devices to the gNodeB may not be efficient or even feasible subject to stringent delay, rate, and energy restrictions. We present a task-oriented communications approach, where all the transmitter, receiver and classifier functionalities are jointly trained as two deep neural networks (DNNs), one for the edge device and another for the gNodeB. We show that this approach achieves better accuracy with smaller DNNs compared to the baselines that treat communications and signal classification as two separate tasks. Finally, we discuss how adversarial machine learning poses a major security threat for the use of DNNs for task-oriented communications. We demonstrate the major performance loss under backdoor (Trojan) attacks and adversarial (evasion) attacks that target the training and test processes of task-oriented communications.
translated by 谷歌翻译
直接到 - 卫星(DTS)通信最近已获得支持全球连接的物联网(IoT)网络的重要性。但是,地球周围密集部署的卫星网络相对较长的距离会导致高路径损失。此外,由于必须部分在物联网设备中进行诸如光束成型,跟踪和均衡之类的高复杂性操作,因此硬件复杂性和对物联网设备的高容量电池的需求都会增加。可重新配置的智能表面(RISS)具有增加能源效率并在传输环境而不是物联网设备上执行复杂的信号处理的潜力。但是,RIS需要级联通道的信息,以更改事件信号的阶段。这项研究将试点信号评估为图形,并将此信息纳入图表网络(GATS),以通过试点信号来跟踪相位关系。提出的基于GAT的通道估计方法研究了DTS IoT网络的性能,以解决不同的RIS配置,以解决具有挑战性的通道估计问题。结果表明,与常规深度学习方法相比,在变化条件下,拟议的GAT均表现出更高的性能,并且在变化的条件下具有更高的鲁棒性,并且计算复杂性较低。此外,根据提议的方法,在通道估计下具有离散和不均匀相移的RIS设计研究了位错误率性能。这项研究的发现之一是,必须在RIS设计期间考虑操作环境的渠道模型和通道估计方法的性能,以尽可能利用性能改进。
translated by 谷歌翻译
可重新配置的智能表面(RIS)是未来无线通信系统的新兴技术。在这项工作中,我们考虑由RIS启用的下行链路空间多路复用,以获得加权和速率(WSR)最大化。在文献中,大多数解决方案使用交替的基于梯度的优化,具有中等性能,高复杂性和有限的可扩展性。我们建议应用完全卷积的网络(FCN)来解决这个问题,最初是为图像的语义分割而设计的。 RIS的矩形形状和具有相邻RIS天线的通道的空间相关性由于它们之间的短距离而鼓励我们将其应用于RIS配置。我们设计一组通道功能,包括通过RIS和Direct通道的级联通道。在基站(BS)中,可分离的最小均方平方误差(MMSE)预编码器用于预测,然后应用加权最小均方误差(WMMSE)预编码器以进行微调,这是不增强的,更复杂的,但实现更好的表现。评价结果表明,该解决方案具有更高的性能,允许比基线更快的评估。因此,它可以更好地缩放到大量的天线,推进RIS更接近实际部署的步骤。
translated by 谷歌翻译
本文提出了一种对无线通信中的一类主动感测问题的深度学习方法,其中代理在预定数量的时间帧上与环境顺序地交互以收集信息,以便为最大化一些实用程序函数来执行感测或致动任务。在这样的主动学习设置中,代理需要根据到目前为止所做的观察结果来依次设计自适应感测策略。为了解决如此挑战的问题,其中历史观察的维度随着时间的推移而增加,我们建议使用长期短期记忆(LSTM)网络来利用观察序列中的时间相关性,并将每个观察映射到固定的尺寸状态信息矢量。然后,我们使用深神经网络(DNN)将LSTM状态映射到每个时间帧到下一个测量步骤的设计。最后,我们采用另一个DNN将最终的LSTM状态映射到所需的解决方案。我们调查了无线通信中建议框架的性能框架的性能。特别地,我们考虑用于MMWAVE光束对准的自适应波束形成问题和反射对准的自适应可重构智能表面感测问题。数值结果表明,所提出的深度主动传感策略优于现有的自适应或非一种非应用感测方案。
translated by 谷歌翻译
可重新配置的智能表面(RIS)已成为近年来改善无线通信的有希望的技术。它通过控制具有较少硬件成本和较低功耗来控制可重新配置的被动元件来引导入射信号来创建有利的传播环境。在本文中,我们考虑了一个RIS辅助多用户多输入单输出下行链路通信系统。我们的目标是通过在接入点和RIS元件的被动波束形成向量中优化主动波束形成来最大化所有用户的加权和速率。与大多数现有的作品不同,我们考虑使用离散相移和不完美的信道状态信息(CSI)更实际的情况。具体而言,对于考虑离散相移和完美CSI的情况,我们首先开发一个深量化的神经网络(DQNN),同时设计主动和被动波束形成,而大多数报道的作品可选地设计。然后,我们基于DQNN提出改进的结构(I-DQNN),以简化参数决策过程,当每个RIS元素的控制位大于1位时。最后,我们将两种基于DQNN的算法扩展到同时考虑离散相移和不完全CSI的情况。我们的仿真结果表明,基于DQNN的两种算法比完美CSI案例中的传统算法更好,并且在不完美的CSI案例中也是更强大的。
translated by 谷歌翻译
可重新配置的智能表面(RIS)可以显着增强TERA-HERTZ大量多输入多输出(MIMO)通信系统的服务覆盖范围。但是,获得有限的飞行员和反馈信号开销的准确高维通道状态信息(CSI)具有挑战性,从而严重降低了常规空间分裂多次访问的性能。为了提高针对CSI缺陷的鲁棒性,本文提出了针对RIS辅助TERA-HERTZ多用户MIMO系统的基于深度学习的(DL)基于速率的多访问(RSMA)方案。具体而言,我们首先提出了基于DL的混合数据模型驱动的RSMA预编码方案,包括RIS的被动预编码以及模拟主动编码和基本站(BS)的RSMA数字活动预码。为了实现RIS的被动预码,我们提出了一个基于变压器的数据驱动的RIS反射网络(RRN)。至于BS的模拟主动编码,我们提出了一个基于匹配器的模拟预编码方案,因为BS和RIS采用了Los-Mimo天线阵列结构。至于BS的RSMA数字活动预码,我们提出了一个低复杂性近似加权的最小均方误差(AWMMSE)数字编码方案。此外,为了更好地编码性能以及较低的计算复杂性,模型驱动的深层展开的主动编码网络(DFAPN)也是通过将所提出的AWMMSE方案与DL相结合的。然后,为了在BS处获得准确的CSI,以实现提高光谱效率的RSMA预编码方案,我们提出了一个CSI采集网络(CAN),具有低飞行员和反馈信号开销,下行链接飞行员的传输,CSI在此处使用CSI的CSI反馈。 (UES)和BS处的CSI重建被建模为基于变压器的端到端神经网络。
translated by 谷歌翻译
为了减轻阴影衰落和障碍物阻塞的影响,可重新配置的智能表面(RIS)已经成为一种有前途的技术,通过控制具有较少硬件成本和更低的功耗来改善无线通信的信号传输质量。然而,由于大量的RIS被动元件,准确,低延迟和低导频和低导架频道状态信息(CSI)采集仍然是RIS辅助系统的相当大挑战。在本文中,我们提出了一个三阶段的关节通道分解和预测框架来要求CSI。所提出的框架利用了基站(BS)-RIS通道是准静态的两次时间段属性,并且RIS用户设备(UE)通道快速时变。具体而言,在第一阶段,我们使用全双工技术来估计BS的特定天线和RIS之间的信道,解决信道分解中的关键缩放模糊问题。然后,我们设计了一种新型的深度神经网络,即稀疏连接的长短期存储器(SCLSTM),并分别在第二和第三阶段提出基于SCLSTM的算法。该算法可以从级联信道同时分解BS-RIS信道和RIS-UE信道,并捕获RIS-UE信道的时间关系以进行预测。仿真结果表明,我们所提出的框架具有比传统信道估计算法更低的导频开销,并且所提出的基于SCLSTM的算法也可以鲁棒地和有效地实现更准确的CSI采集。
translated by 谷歌翻译
最近的作品表明,现代机器学习技术可以为长期存在的联合源通道编码(JSCC)问题提供另一种方法。非常有希望的初始结果,优于使用单独的源代码和通道代码的流行数字方案,已被证明用于使用深神经网络(DNNS)的无线图像和视频传输。但是,此类方案的端到端培训需要可区分的通道输入表示。因此,先前的工作假设可以通过通道传输任何复杂值。这可以防止在硬件或协议只能接收数字星座规定的某些频道输入集的情况下应用这些代码。本文中,我们建议使用有限通道输入字母的端到端优化的JSCC解决方案DeepJSCC-Q。我们表明,DEEPJSCC-Q可以实现与允许任何复杂的有价值通道输入的先前作品相似的性能,尤其是在可用的高调制订单时,并且在调制顺序增加的情况下,性能渐近接近无约束通道输入的情况。重要的是,DEEPJSCC-Q保留了不可预测的渠道条件下图像质量的优雅降级,这是在频道迅速变化的移动系统中部署的理想属性。
translated by 谷歌翻译
由于其低复杂性和鲁棒性,机器学习(ML)吸引了对物理层设计问题的巨大研究兴趣,例如信道估计。通道估计通过ML需要在数据集上进行模型训练,该数据集通常包括作为输入和信道数据的接收的导频信号作为输出。在以前的作品中,模型培训主要通过集中式学习(CL)进行,其中整个训练数据集从基站(BS)的用户收集。这种方法引入了数据收集的巨大通信开销。在本文中,为了解决这一挑战,我们提出了一种用于频道估计的联邦学习(FL)框架。我们设计在用户的本地数据集上培训的卷积神经网络(CNN),而不将它们发送到BS。我们为常规和RIS(智能反射表面)开发了基于流的信道估计方案,辅助大规模MIMO(多输入多输出)系统,其中单个CNN为两种情况训练了两个不同的数据集。我们评估噪声和量化模型传输的性能,并表明所提出的方法提供大约16倍的开销比CL,同时保持令人满意的性能接近CL。此外,所提出的架构表现出比最先进的ML的估计误差较低。
translated by 谷歌翻译
最近,基于深层神经网络(DNN)的物理层通信技术引起了极大的兴趣。尽管模拟实验已经验证了它们增强通信系统和出色性能的潜力,但对理论分析的关注很少。具体而言,物理层中的大多数研究都倾向于专注于DNN模型在无线通信问题上的应用,但理论上不了解DNN在通信系统中的工作方式。在本文中,我们旨在定量分析为什么DNN可以在物理层中与传统技术相比,并在计算复杂性方面提高其成本。为了实现这一目标,我们首先分析基于DNN的发射器的编码性能,并将其与传统发射器进行比较。然后,我们理论上分析了基于DNN的估计器的性能,并将其与传统估计器进行比较。第三,我们调查并验证在信息理论概念下基于DNN的通信系统中如何播放信息。我们的分析开发了一种简洁的方式,可以在物理层通信中打开DNN的“黑匣子”,可用于支持基于DNN的智能通信技术的设计,并有助于提供可解释的性能评估。
translated by 谷歌翻译
Ultra-reliable short-packet communication is a major challenge in future wireless networks with critical applications. To achieve ultra-reliable communications beyond 99.999%, this paper envisions a new interaction-based communication paradigm that exploits feedback from the receiver. We present AttentionCode, a new class of feedback codes leveraging deep learning (DL) technologies. The underpinnings of AttentionCode are three architectural innovations: AttentionNet, input restructuring, and adaptation to fading channels, accompanied by several training methods, including large-batch training, distributed learning, look-ahead optimizer, training-test signal-to-noise ratio (SNR) mismatch, and curriculum learning. The training methods can potentially be generalized to other wireless communication applications with machine learning. Numerical experiments verify that AttentionCode establishes a new state of the art among all DL-based feedback codes in both additive white Gaussian noise (AWGN) channels and fading channels. In AWGN channels with noiseless feedback, for example, AttentionCode achieves a block error rate (BLER) of $10^{-7}$ when the forward channel SNR is 0 dB for a block size of 50 bits, demonstrating the potential of AttentionCode to provide ultra-reliable short-packet communications.
translated by 谷歌翻译
本文提出了对基于深度学习的无线信号分类器的信道感知对抗攻击。有一个发射器,发送具有不同调制类型的信号。每个接收器使用深神经网络以将其超空气接收信号分类为调制类型。与此同时,对手将对手扰动(受到电力预算的影响)透射到欺骗接收器,以在作为透射信号叠加和对抗扰动的叠加接收的分类信号中进行错误。首先,当在设计对抗扰动时不考虑通道时,这些逃避攻击被证明会失败。然后,通过考虑来自每个接收器的对手的频道效应来提出现实攻击。在示出频道感知攻击是选择性的(即,它只影响扰动设计中的信道中考虑的接收器),通过制作常见的对抗扰动来呈现广播对抗攻击,以在不同接收器处同时欺骗分类器。通过占通道,发射机输入和分类器模型可用的不同信息,将调制分类器对过空中侵犯攻击的主要脆弱性。最后,引入了基于随机平滑的经过认证的防御,即增加了噪声训练数据,使调制分类器鲁棒到对抗扰动。
translated by 谷歌翻译
正交频分复用(OFDM)已广泛应用于当前通信系统。人工智能(AI)addm接收器目前被带到最前沿替换和改进传统的OFDM接收器。在这项研究中,我们首先比较两个AI辅助OFDM接收器,即数据驱动的完全连接的深神经网络和模型驱动的COMNet,通过广泛的仿真和实时视频传输,使用5G快速原型制作系统进行跨越式-Air(OTA)测试。我们在离线训练和真实环境之间的频道模型之间的差异差异导致的模拟和OTA测试之间找到了性能差距。我们开发一种新颖的在线培训系统,称为SwitchNet接收器,以解决此问题。该接收器具有灵活且可扩展的架构,可以通过在线训练几个参数来适应真实频道。从OTA测试中,AI辅助OFDM接收器,尤其是SwitchNet接收器,对真实环境具有鲁棒,并且对未来的通信系统有前途。我们讨论了本文初步研究的潜在挑战和未来的研究。
translated by 谷歌翻译
基于深度学习的渠道代码设计最近引起了人们的兴趣,可以替代传统的编码算法,尤其是对于现有代码不提供有效解决方案的渠道。通过反馈渠道进行的沟通就是一个这样的问题,最近通过采用各种深度学习体系结构来获得有希望的结果。在本文中,我们为反馈渠道介绍了一种新颖的学习辅助代码设计,称为广义块注意反馈(GBAF)代码,i)使用模块化体系结构,可以使用不同的神经网络体系结构实现;ii)与现有设计相比,错误的可能性提高了误顺序;iii)可以以所需的代码速率传输。
translated by 谷歌翻译
尽管语义通信对大量任务表现出令人满意的性能,但语义噪声和系统的鲁棒性的影响尚未得到很好的研究。语义噪声是指预期的语义符号和接收到的语义符号之间的误导性,从而导致任务失败。在本文中,我们首先提出了一个框架,用于稳健的端到端语义通信系统来对抗语义噪声。特别是,我们分析了样品依赖性和样本无关的语义噪声。为了打击语义噪声,开发了具有重量扰动的对抗训练,以在训练数据集中纳入带有语义噪声的样品。然后,我们建议掩盖一部分输入,在该输入中,语义噪声经常出现,并通过噪声相关的掩蔽策略设计蒙版vector量化量化的量化自动编码器(VQ-VAE)。我们使用发射器共享的离​​散代码簿和接收器用于编码功能表示。为了进一步提高系统鲁棒性,我们开发了一个功能重要性模块(FIM),以抑制与噪声相关和任务无关的功能。因此,发射器只需要在代码簿中传输这些重要的任务相关功能的索引即可。仿真结果表明,所提出的方法可以应用于许多下游任务,并显着提高针对语义噪声的鲁棒性,并显着减少了传输开销。
translated by 谷歌翻译
Semantic communications seeks to transfer information from a source while conveying a desired meaning to its destination. We model the transmitter-receiver functionalities as an autoencoder followed by a task classifier that evaluates the meaning of the information conveyed to the receiver. The autoencoder consists of an encoder at the transmitter to jointly model source coding, channel coding, and modulation, and a decoder at the receiver to jointly model demodulation, channel decoding and source decoding. By augmenting the reconstruction loss with a semantic loss, the two deep neural networks (DNNs) of this encoder-decoder pair are interactively trained with the DNN of the semantic task classifier. This approach effectively captures the latent feature space and reliably transfers compressed feature vectors with a small number of channel uses while keeping the semantic loss low. We identify the multi-domain security vulnerabilities of using the DNNs for semantic communications. Based on adversarial machine learning, we introduce test-time (targeted and non-targeted) adversarial attacks on the DNNs by manipulating their inputs at different stages of semantic communications. As a computer vision attack, small perturbations are injected to the images at the input of the transmitter's encoder. As a wireless attack, small perturbations signals are transmitted to interfere with the input of the receiver's decoder. By launching these stealth attacks individually or more effectively in a combined form as a multi-domain attack, we show that it is possible to change the semantics of the transferred information even when the reconstruction loss remains low. These multi-domain adversarial attacks pose as a serious threat to the semantics of information transfer (with larger impact than conventional jamming) and raise the need of defense methods for the safe adoption of semantic communications.
translated by 谷歌翻译