直接到 - 卫星(DTS)通信最近已获得支持全球连接的物联网(IoT)网络的重要性。但是,地球周围密集部署的卫星网络相对较长的距离会导致高路径损失。此外,由于必须部分在物联网设备中进行诸如光束成型,跟踪和均衡之类的高复杂性操作,因此硬件复杂性和对物联网设备的高容量电池的需求都会增加。可重新配置的智能表面(RISS)具有增加能源效率并在传输环境而不是物联网设备上执行复杂的信号处理的潜力。但是,RIS需要级联通道的信息,以更改事件信号的阶段。这项研究将试点信号评估为图形,并将此信息纳入图表网络(GATS),以通过试点信号来跟踪相位关系。提出的基于GAT的通道估计方法研究了DTS IoT网络的性能,以解决不同的RIS配置,以解决具有挑战性的通道估计问题。结果表明,与常规深度学习方法相比,在变化条件下,拟议的GAT均表现出更高的性能,并且在变化的条件下具有更高的鲁棒性,并且计算复杂性较低。此外,根据提议的方法,在通道估计下具有离散和不均匀相移的RIS设计研究了位错误率性能。这项研究的发现之一是,必须在RIS设计期间考虑操作环境的渠道模型和通道估计方法的性能,以尽可能利用性能改进。
translated by 谷歌翻译
将推动下一代通信技术,以陆地网络与含有高空平台站和低地球轨道卫星的MEGA-星座的陆地网络(NTNS)的合作。另一方面,人类已经开始在一条漫长的道路上建立在其他行星上的新栖息地。这认为NTN与NTNS具有深度空间网络(DSN)的合作。在这方面,我们提出了使用可重构的智能表面(RISS)来改善和升级这一合作,因为它们与空间的操作环境的尺寸,重量和电力限制完全匹配。通过针对挑战,用例和公开问题来提出RIS协助非陆地和行星通信的全面框架。此外,通过仿真结果讨论了环境效应下RIS辅助NTN的性能,例如太阳闪烁和卫星阻力。
translated by 谷歌翻译
在本文中,我们介绍了一个单像素的到达方向(DOA)估计技术,利用了曲线图注意网络(GAT)的深度学习框架。使用编码孔径技术实现物理层压缩,探测使用一组时空不连贯模式探测入射在孔径上的远场源的光谱。然后将该信息进行编码并压缩到编码孔径的信道中。编码孔径基于元表面天线设计,并且它用作接收器,展示单通道并替换基于传统的多通道光栅扫描基于DOA估计的解决方案。 GAT网络使得压缩DOA估计框架能够直接从使用编码孔径获取的测量来学习DOA信息。该步骤消除了对额外的重建步骤的需求,并显着简化了处理层以实现DOA估计。我们表明所提出的GAT集成单像素雷达框架即使在相对低的信噪比(SNR)水平下也可以检索高保真DOA信息。
translated by 谷歌翻译
由于其低复杂性和鲁棒性,机器学习(ML)吸引了对物理层设计问题的巨大研究兴趣,例如信道估计。通道估计通过ML需要在数据集上进行模型训练,该数据集通常包括作为输入和信道数据的接收的导频信号作为输出。在以前的作品中,模型培训主要通过集中式学习(CL)进行,其中整个训练数据集从基站(BS)的用户收集。这种方法引入了数据收集的巨大通信开销。在本文中,为了解决这一挑战,我们提出了一种用于频道估计的联邦学习(FL)框架。我们设计在用户的本地数据集上培训的卷积神经网络(CNN),而不将它们发送到BS。我们为常规和RIS(智能反射表面)开发了基于流的信道估计方案,辅助大规模MIMO(多输入多输出)系统,其中单个CNN为两种情况训练了两个不同的数据集。我们评估噪声和量化模型传输的性能,并表明所提出的方法提供大约16倍的开销比CL,同时保持令人满意的性能接近CL。此外,所提出的架构表现出比最先进的ML的估计误差较低。
translated by 谷歌翻译
为了减轻阴影衰落和障碍物阻塞的影响,可重新配置的智能表面(RIS)已经成为一种有前途的技术,通过控制具有较少硬件成本和更低的功耗来改善无线通信的信号传输质量。然而,由于大量的RIS被动元件,准确,低延迟和低导频和低导架频道状态信息(CSI)采集仍然是RIS辅助系统的相当大挑战。在本文中,我们提出了一个三阶段的关节通道分解和预测框架来要求CSI。所提出的框架利用了基站(BS)-RIS通道是准静态的两次时间段属性,并且RIS用户设备(UE)通道快速时变。具体而言,在第一阶段,我们使用全双工技术来估计BS的特定天线和RIS之间的信道,解决信道分解中的关键缩放模糊问题。然后,我们设计了一种新型的深度神经网络,即稀疏连接的长短期存储器(SCLSTM),并分别在第二和第三阶段提出基于SCLSTM的算法。该算法可以从级联信道同时分解BS-RIS信道和RIS-UE信道,并捕获RIS-UE信道的时间关系以进行预测。仿真结果表明,我们所提出的框架具有比传统信道估计算法更低的导频开销,并且所提出的基于SCLSTM的算法也可以鲁棒地和有效地实现更准确的CSI采集。
translated by 谷歌翻译
可重新配置的智能表面(RIS)已成为近年来改善无线通信的有希望的技术。它通过控制具有较少硬件成本和较低功耗来控制可重新配置的被动元件来引导入射信号来创建有利的传播环境。在本文中,我们考虑了一个RIS辅助多用户多输入单输出下行链路通信系统。我们的目标是通过在接入点和RIS元件的被动波束形成向量中优化主动波束形成来最大化所有用户的加权和速率。与大多数现有的作品不同,我们考虑使用离散相移和不完美的信道状态信息(CSI)更实际的情况。具体而言,对于考虑离散相移和完美CSI的情况,我们首先开发一个深量化的神经网络(DQNN),同时设计主动和被动波束形成,而大多数报道的作品可选地设计。然后,我们基于DQNN提出改进的结构(I-DQNN),以简化参数决策过程,当每个RIS元素的控制位大于1位时。最后,我们将两种基于DQNN的算法扩展到同时考虑离散相移和不完全CSI的情况。我们的仿真结果表明,基于DQNN的两种算法比完美CSI案例中的传统算法更好,并且在不完美的CSI案例中也是更强大的。
translated by 谷歌翻译
可重新配置的智能表面(RIS)可以显着增强TERA-HERTZ大量多输入多输出(MIMO)通信系统的服务覆盖范围。但是,获得有限的飞行员和反馈信号开销的准确高维通道状态信息(CSI)具有挑战性,从而严重降低了常规空间分裂多次访问的性能。为了提高针对CSI缺陷的鲁棒性,本文提出了针对RIS辅助TERA-HERTZ多用户MIMO系统的基于深度学习的(DL)基于速率的多访问(RSMA)方案。具体而言,我们首先提出了基于DL的混合数据模型驱动的RSMA预编码方案,包括RIS的被动预编码以及模拟主动编码和基本站(BS)的RSMA数字活动预码。为了实现RIS的被动预码,我们提出了一个基于变压器的数据驱动的RIS反射网络(RRN)。至于BS的模拟主动编码,我们提出了一个基于匹配器的模拟预编码方案,因为BS和RIS采用了Los-Mimo天线阵列结构。至于BS的RSMA数字活动预码,我们提出了一个低复杂性近似加权的最小均方误差(AWMMSE)数字编码方案。此外,为了更好地编码性能以及较低的计算复杂性,模型驱动的深层展开的主动编码网络(DFAPN)也是通过将所提出的AWMMSE方案与DL相结合的。然后,为了在BS处获得准确的CSI,以实现提高光谱效率的RSMA预编码方案,我们提出了一个CSI采集网络(CAN),具有低飞行员和反馈信号开销,下行链接飞行员的传输,CSI在此处使用CSI的CSI反馈。 (UES)和BS处的CSI重建被建模为基于变压器的端到端神经网络。
translated by 谷歌翻译
Ultra-reliable short-packet communication is a major challenge in future wireless networks with critical applications. To achieve ultra-reliable communications beyond 99.999%, this paper envisions a new interaction-based communication paradigm that exploits feedback from the receiver. We present AttentionCode, a new class of feedback codes leveraging deep learning (DL) technologies. The underpinnings of AttentionCode are three architectural innovations: AttentionNet, input restructuring, and adaptation to fading channels, accompanied by several training methods, including large-batch training, distributed learning, look-ahead optimizer, training-test signal-to-noise ratio (SNR) mismatch, and curriculum learning. The training methods can potentially be generalized to other wireless communication applications with machine learning. Numerical experiments verify that AttentionCode establishes a new state of the art among all DL-based feedback codes in both additive white Gaussian noise (AWGN) channels and fading channels. In AWGN channels with noiseless feedback, for example, AttentionCode achieves a block error rate (BLER) of $10^{-7}$ when the forward channel SNR is 0 dB for a block size of 50 bits, demonstrating the potential of AttentionCode to provide ultra-reliable short-packet communications.
translated by 谷歌翻译
由于其快速和低功率配置,可重新配置的智能表面(RISS)最近被视为未来无线网络的节能解决方案,这在实现大规模连通性和低延迟通信方面具有增加的潜力。基于RIS的系统中的准确且低空的通道估计是通常的RIS单元元素及其独特的硬件约束,这是最关键的挑战之一。在本文中,我们专注于RIS授权的多用户多用户多输入单输出(MISO)上行链路通信系统的上行链路,并根据并行因子分解提出了一个通道估计框架,以展开所得的级联通道模型。我们为基站和RIS之间的渠道以及RIS与用户之间的渠道提供了两种迭代估计算法。一个基于交替的最小二乘(ALS),而另一个使用向量近似消息传递到迭代的迭代中,从估计的向量重建了两个未知的通道。为了从理论上评估基于ALS的算法的性能,我们得出了其估计值CRAM \'ER-RAO BOND(CRB)。我们还通过估计的通道和基本站的不同预码方案讨论了可实现的总和率计算。我们的广泛仿真结果表明,我们的算法表现优于基准方案,并且ALS技术可实现CRB。还证明,使用估计通道的总和率总是在各种设置下达到完美通道的总和,从而验证了提出的估计算法的有效性和鲁棒性。
translated by 谷歌翻译
本文提出了一种新的方法,用于可重新配置智能表面(RIS)和发射器 - 接收器对的联合设计,其作为一组深神经网络(DNN)培训,以优化端到端通信性能接收者。 RIS是一种软件定义的单位单元阵列,其可以根据散射和反射轮廓来控制,以将来自发射机的传入信号集中到接收器。 RIS的好处是通过克服视线(LOS)链路的物理障碍来提高无线通信的覆盖率和光谱效率。 RIS波束码字(从预定义的码本)的选择过程被配制为DNN,而发射器 - 接收器对的操作被建模为两个DNN,一个用于编码器(在发射器)和另一个一个用于AutoEncoder的解码器(在接收器处),通过考虑包括由in之间引起的频道效应。底层DNN共同训练,以最小化接收器处的符号误差率。数值结果表明,所提出的设计在各种基线方案中实现了误差性能的主要增益,其中使用了没有RIS或者将RIS光束的选择与发射器 - 接收器对的设计分离。
translated by 谷歌翻译
我们考虑无上行赠款非正交多访问(NOMA)中的多用户检测(MUD)问题,其中访问点必须确定活动互联网(IoT)设备的总数和正确的身份他们传输的数据。我们假设IoT设备使用复杂的扩散序列并以随机访问的方式传输信息,按照爆发 - 距离模型,其中一些物联网设备以高概率在多个相邻的时间插槽中传输其数据,而另一些物联网设备在帧中仅传输一次。利用时间相关性,我们提出了一个基于注意力的双向长期记忆(BILSTM)网络来解决泥浆问题。 Bilstm网络使用前向和反向通过LSTM创建设备激活历史记录的模式,而注意机制为设备激活点提供了基本背景。通过这样做,遵循了层次途径,以在无拨款方案中检测主动设备。然后,通过利用复杂的扩散序列,对估计的活动设备进行了盲数据检测。所提出的框架不需要对设备稀疏水平和执行泥浆的通道的先验知识。结果表明,与现有的基准方案相比,提议的网络的性能更好。
translated by 谷歌翻译
Communication and computation are often viewed as separate tasks. This approach is very effective from the perspective of engineering as isolated optimizations can be performed. On the other hand, there are many cases where the main interest is a function of the local information at the devices instead of the local information itself. For such scenarios, information theoretical results show that harnessing the interference in a multiple-access channel for computation, i.e., over-the-air computation (OAC), can provide a significantly higher achievable computation rate than the one with the separation of communication and computation tasks. Besides, the gap between OAC and separation in terms of computation rate increases with more participating nodes. Given this motivation, in this study, we provide a comprehensive survey on practical OAC methods. After outlining fundamentals related to OAC, we discuss the available OAC schemes with their pros and cons. We then provide an overview of the enabling mechanisms and relevant metrics to achieve reliable computation in the wireless channel. Finally, we summarize the potential applications of OAC and point out some future directions.
translated by 谷歌翻译
Federated Edge Learning(Feel)已成为一种革命性的范式,可以在6G无线网络的边缘开发AI服务,因为它支持大量移动设备的协作模型培训。但是,无线通道上的模型通信,尤其是在上行链路模型上传的感觉中,已被广泛认为是一种严重限制感觉效率的瓶颈。尽管无线计算可以减轻广播资源在感觉上传中的过度成本,但无线空中感觉的实际实施仍然遭受了一些挑战,包括强烈的Straggler问题,大型沟通开销和潜在的隐私泄漏。在本文中,我们研究了这些挑战,并利用了未来无线系统的关键推动力,以应对这些挑战。我们研究了有关RIS授权的感觉的最新解决方案,并探索采用RIS增强感觉性能的有希望的研究机会。
translated by 谷歌翻译
鉴于无线频谱的有限性和对无线通信最近的技术突破产生的频谱使用不断增加的需求,干扰问题仍在继续持续存在。尽管最近解决干涉问题的进步,但干扰仍然呈现出有效使用频谱的挑战。这部分是由于Wi-Fi的无许可和管理共享乐队使用的升高,长期演进(LTE)未许可(LTE-U),LTE许可辅助访问(LAA),5G NR等机会主义频谱访问解决方案。因此,需要对干扰稳健的有效频谱使用方案的需求从未如此重要。在过去,通过使用避免技术以及非AI缓解方法(例如,自适应滤波器)来解决问题的大多数解决方案。非AI技术的关键缺陷是需要提取或开发信号特征的域专业知识,例如CycrationArity,带宽和干扰信号的调制。最近,研究人员已成功探索了AI / ML的物理(PHY)层技术,尤其是深度学习,可减少或补偿干扰信号,而不是简单地避免它。 ML基于ML的方法的潜在思想是学习来自数据的干扰或干扰特性,从而使需要对抑制干扰的域专业知识进行侧联。在本文中,我们审查了广泛的技术,这些技术已经深入了解抑制干扰。我们为干扰抑制中许多不同类型的深度学习技术提供比较和指导。此外,我们突出了在干扰抑制中成功采用深度学习的挑战和潜在的未来研究方向。
translated by 谷歌翻译
随着Terahertz(THZ)信号产生和辐射方法的最新进展,关节通信和传感应用正在塑造无线系统的未来。为此,预计将在用户设备设备上携带THZ光谱,以识别感兴趣的材料和气态组件。 THZ特异性的信号处理技术应补充这种对THZ感应的重新兴趣,以有效利用THZ频带。在本文中,我们介绍了这些技术的概述,重点是信号预处理(标准的正常差异归一化,最小值 - 最大归一化和Savitzky-Golay滤波),功能提取(主成分分析,部分最小二乘,t,T,T部分,t部分,t部分正方形,T - 分布的随机邻居嵌入和非负矩阵分解)和分类技术(支持向量机器,k-nearest邻居,判别分析和天真的贝叶斯)。我们还通过探索他们在THZ频段的有希望的传感能力来解决深度学习技术的有效性。最后,我们研究了在联合通信和传感的背景下,研究方法的性能和复杂性权衡;我们激励相应的用例,并在该领域提供未来的研究方向。
translated by 谷歌翻译
Terahertz频段(0.1---10 THZ)中的无线通信被视为未来第六代(6G)无线通信系统的关键促进技术之一,超出了大量多重输入多重输出(大量MIMO)技术。但是,THZ频率的非常高的传播衰减和分子吸收通常限制了信号传输距离和覆盖范围。从最近在可重构智能表面(RIS)上实现智能无线电传播环境的突破,我们为多跳RIS RIS辅助通信网络提供了一种新型的混合波束形成方案,以改善THZ波段频率的覆盖范围。特别是,部署了多个被动和可控的RIS,以协助基站(BS)和多个单人体用户之间的传输。我们通过利用最新的深钢筋学习(DRL)来应对传播损失的最新进展,研究了BS在BS和RISS上的模拟光束矩阵的联合设计。为了改善拟议的基于DRL的算法的收敛性,然后设计了两种算法,以初始化数字波束形成和使用交替优化技术的模拟波束形成矩阵。仿真结果表明,与基准相比,我们提出的方案能够改善50 \%的THZ通信范围。此外,还表明,我们提出的基于DRL的方法是解决NP-固定光束形成问题的最先进方法,尤其是当RIS辅助THZ通信网络的信号经历多个啤酒花时。
translated by 谷歌翻译
正交频分复用(OFDM)已广泛应用于当前通信系统。人工智能(AI)addm接收器目前被带到最前沿替换和改进传统的OFDM接收器。在这项研究中,我们首先比较两个AI辅助OFDM接收器,即数据驱动的完全连接的深神经网络和模型驱动的COMNet,通过广泛的仿真和实时视频传输,使用5G快速原型制作系统进行跨越式-Air(OTA)测试。我们在离线训练和真实环境之间的频道模型之间的差异差异导致的模拟和OTA测试之间找到了性能差距。我们开发一种新颖的在线培训系统,称为SwitchNet接收器,以解决此问题。该接收器具有灵活且可扩展的架构,可以通过在线训练几个参数来适应真实频道。从OTA测试中,AI辅助OFDM接收器,尤其是SwitchNet接收器,对真实环境具有鲁棒,并且对未来的通信系统有前途。我们讨论了本文初步研究的潜在挑战和未来的研究。
translated by 谷歌翻译
混合模拟和数字波束成形收发器在解决下一代毫米波(MM波)大规模MIMO(多输入多输出)系统中的昂贵硬件和高训练开销的挑战。然而,在混合架构中缺乏完全数字波束成形和MM波的短相干时间对信道估计施加了额外的约束。在解决这些挑战的前提是,主要集中在窄带信道上,其中采用基于优化的或贪婪算法来导出混合波束形成器。在本文中,我们介绍了用于频率选择,宽带MM波系统的信道估计和混合波束形成的深度学习(DL)方法。特别地,我们考虑大规模的MIMO正交频分复用(MIMO-OFDM)系统,并提出包括卷积神经网络(CNN)的三种不同的DL框架,其接受接收信号的原始数据作为输入和产生信道估计和混合波束形成器在输出。我们还介绍了离线和在线预测方案。数值实验表明,与目前的最先进的优化和DL方法相比,我们的方法提供了更高的频谱效率,较小的计算成本和更少的导频信号,以及对接收的导频数据中的偏差较高的差异,损坏的信道矩阵和传播环境。
translated by 谷歌翻译
本文提出了一种对无线通信中的一类主动感测问题的深度学习方法,其中代理在预定数量的时间帧上与环境顺序地交互以收集信息,以便为最大化一些实用程序函数来执行感测或致动任务。在这样的主动学习设置中,代理需要根据到目前为止所做的观察结果来依次设计自适应感测策略。为了解决如此挑战的问题,其中历史观察的维度随着时间的推移而增加,我们建议使用长期短期记忆(LSTM)网络来利用观察序列中的时间相关性,并将每个观察映射到固定的尺寸状态信息矢量。然后,我们使用深神经网络(DNN)将LSTM状态映射到每个时间帧到下一个测量步骤的设计。最后,我们采用另一个DNN将最终的LSTM状态映射到所需的解决方案。我们调查了无线通信中建议框架的性能框架的性能。特别地,我们考虑用于MMWAVE光束对准的自适应波束形成问题和反射对准的自适应可重构智能表面感测问题。数值结果表明,所提出的深度主动传感策略优于现有的自适应或非一种非应用感测方案。
translated by 谷歌翻译
在本文中,提出了一种新的方法,该方法允许基于神经网络(NN)均衡器的低复杂性发展,以缓解高速相干光学传输系统中的损伤。在这项工作中,我们提供了已应用于馈电和经常性NN设计的各种深层模型压缩方法的全面描述和比较。此外,我们评估了这些策略对每个NN均衡器的性能的影响。考虑量化,重量聚类,修剪和其他用于模型压缩的尖端策略。在这项工作中,我们提出并评估贝叶斯优化辅助压缩,其中选择了压缩的超参数以同时降低复杂性并提高性能。总之,通过使用模拟和实验数据来评估每种压缩方法的复杂性及其性能之间的权衡,以完成分析。通过利用最佳压缩方法,我们表明可以设计基于NN的均衡器,该均衡器比传统的数字背部传播(DBP)均衡器具有更好的性能,并且只有一个步骤。这是通过减少使用加权聚类和修剪算法后在NN均衡器中使用的乘数数量来完成的。此外,我们证明了基于NN的均衡器也可以实现卓越的性能,同时仍然保持与完整的电子色色散补偿块相同的复杂性。我们通过强调开放问题和现有挑战以及未来的研究方向来结束分析。
translated by 谷歌翻译