本文提出了一种对无线通信中的一类主动感测问题的深度学习方法,其中代理在预定数量的时间帧上与环境顺序地交互以收集信息,以便为最大化一些实用程序函数来执行感测或致动任务。在这样的主动学习设置中,代理需要根据到目前为止所做的观察结果来依次设计自适应感测策略。为了解决如此挑战的问题,其中历史观察的维度随着时间的推移而增加,我们建议使用长期短期记忆(LSTM)网络来利用观察序列中的时间相关性,并将每个观察映射到固定的尺寸状态信息矢量。然后,我们使用深神经网络(DNN)将LSTM状态映射到每个时间帧到下一个测量步骤的设计。最后,我们采用另一个DNN将最终的LSTM状态映射到所需的解决方案。我们调查了无线通信中建议框架的性能框架的性能。特别地,我们考虑用于MMWAVE光束对准的自适应波束形成问题和反射对准的自适应可重构智能表面感测问题。数值结果表明,所提出的深度主动传感策略优于现有的自适应或非一种非应用感测方案。
translated by 谷歌翻译
可重新配置的智能表面(RIS)可以显着增强TERA-HERTZ大量多输入多输出(MIMO)通信系统的服务覆盖范围。但是,获得有限的飞行员和反馈信号开销的准确高维通道状态信息(CSI)具有挑战性,从而严重降低了常规空间分裂多次访问的性能。为了提高针对CSI缺陷的鲁棒性,本文提出了针对RIS辅助TERA-HERTZ多用户MIMO系统的基于深度学习的(DL)基于速率的多访问(RSMA)方案。具体而言,我们首先提出了基于DL的混合数据模型驱动的RSMA预编码方案,包括RIS的被动预编码以及模拟主动编码和基本站(BS)的RSMA数字活动预码。为了实现RIS的被动预码,我们提出了一个基于变压器的数据驱动的RIS反射网络(RRN)。至于BS的模拟主动编码,我们提出了一个基于匹配器的模拟预编码方案,因为BS和RIS采用了Los-Mimo天线阵列结构。至于BS的RSMA数字活动预码,我们提出了一个低复杂性近似加权的最小均方误差(AWMMSE)数字编码方案。此外,为了更好地编码性能以及较低的计算复杂性,模型驱动的深层展开的主动编码网络(DFAPN)也是通过将所提出的AWMMSE方案与DL相结合的。然后,为了在BS处获得准确的CSI,以实现提高光谱效率的RSMA预编码方案,我们提出了一个CSI采集网络(CAN),具有低飞行员和反馈信号开销,下行链接飞行员的传输,CSI在此处使用CSI的CSI反馈。 (UES)和BS处的CSI重建被建模为基于变压器的端到端神经网络。
translated by 谷歌翻译
为了减轻阴影衰落和障碍物阻塞的影响,可重新配置的智能表面(RIS)已经成为一种有前途的技术,通过控制具有较少硬件成本和更低的功耗来改善无线通信的信号传输质量。然而,由于大量的RIS被动元件,准确,低延迟和低导频和低导架频道状态信息(CSI)采集仍然是RIS辅助系统的相当大挑战。在本文中,我们提出了一个三阶段的关节通道分解和预测框架来要求CSI。所提出的框架利用了基站(BS)-RIS通道是准静态的两次时间段属性,并且RIS用户设备(UE)通道快速时变。具体而言,在第一阶段,我们使用全双工技术来估计BS的特定天线和RIS之间的信道,解决信道分解中的关键缩放模糊问题。然后,我们设计了一种新型的深度神经网络,即稀疏连接的长短期存储器(SCLSTM),并分别在第二和第三阶段提出基于SCLSTM的算法。该算法可以从级联信道同时分解BS-RIS信道和RIS-UE信道,并捕获RIS-UE信道的时间关系以进行预测。仿真结果表明,我们所提出的框架具有比传统信道估计算法更低的导频开销,并且所提出的基于SCLSTM的算法也可以鲁棒地和有效地实现更准确的CSI采集。
translated by 谷歌翻译
在带有频划分双链体(FDD)的常规多用户多用户多输入多输出(MU-MIMO)系统中,尽管高度耦合,但已单独设计了通道采集和预编码器优化过程。本文研究了下行链路MU-MIMO系统的端到端设计,其中包括试点序列,有限的反馈和预编码。为了解决这个问题,我们提出了一个新颖的深度学习(DL)框架,该框架共同优化了用户的反馈信息生成和基础站(BS)的预编码器设计。 MU-MIMO系统中的每个过程都被智能设计的多个深神经网络(DNN)单元所取代。在BS上,神经网络生成试验序列,并帮助用户获得准确的频道状态信息。在每个用户中,频道反馈操作是由单个用户DNN以分布方式进行的。然后,另一个BS DNN从用户那里收集反馈信息,并确定MIMO预编码矩阵。提出了联合培训算法以端到端的方式优化所有DNN单元。此外,还提出了一种可以避免针对可扩展设计的不同网络大小进行重新训练的培训策略。数值结果证明了与经典优化技术和其他常规DNN方案相比,提出的DL框架的有效性。
translated by 谷歌翻译
Terahertz频段(0.1---10 THZ)中的无线通信被视为未来第六代(6G)无线通信系统的关键促进技术之一,超出了大量多重输入多重输出(大量MIMO)技术。但是,THZ频率的非常高的传播衰减和分子吸收通常限制了信号传输距离和覆盖范围。从最近在可重构智能表面(RIS)上实现智能无线电传播环境的突破,我们为多跳RIS RIS辅助通信网络提供了一种新型的混合波束形成方案,以改善THZ波段频率的覆盖范围。特别是,部署了多个被动和可控的RIS,以协助基站(BS)和多个单人体用户之间的传输。我们通过利用最新的深钢筋学习(DRL)来应对传播损失的最新进展,研究了BS在BS和RISS上的模拟光束矩阵的联合设计。为了改善拟议的基于DRL的算法的收敛性,然后设计了两种算法,以初始化数字波束形成和使用交替优化技术的模拟波束形成矩阵。仿真结果表明,与基准相比,我们提出的方案能够改善50 \%的THZ通信范围。此外,还表明,我们提出的基于DRL的方法是解决NP-固定光束形成问题的最先进方法,尤其是当RIS辅助THZ通信网络的信号经历多个啤酒花时。
translated by 谷歌翻译
可重新配置的智能表面(RIS)已成为近年来改善无线通信的有希望的技术。它通过控制具有较少硬件成本和较低功耗来控制可重新配置的被动元件来引导入射信号来创建有利的传播环境。在本文中,我们考虑了一个RIS辅助多用户多输入单输出下行链路通信系统。我们的目标是通过在接入点和RIS元件的被动波束形成向量中优化主动波束形成来最大化所有用户的加权和速率。与大多数现有的作品不同,我们考虑使用离散相移和不完美的信道状态信息(CSI)更实际的情况。具体而言,对于考虑离散相移和完美CSI的情况,我们首先开发一个深量化的神经网络(DQNN),同时设计主动和被动波束形成,而大多数报道的作品可选地设计。然后,我们基于DQNN提出改进的结构(I-DQNN),以简化参数决策过程,当每个RIS元素的控制位大于1位时。最后,我们将两种基于DQNN的算法扩展到同时考虑离散相移和不完全CSI的情况。我们的仿真结果表明,基于DQNN的两种算法比完美CSI案例中的传统算法更好,并且在不完美的CSI案例中也是更强大的。
translated by 谷歌翻译
In this paper, we propose a deep learning-based beam tracking method for millimeter-wave (mmWave)communications. Beam tracking is employed for transmitting the known symbols using the sounding beams and tracking time-varying channels to maintain a reliable communication link. When the pose of a user equipment (UE) device varies rapidly, the mmWave channels also tend to vary fast, which hinders seamless communication. Thus, models that can capture temporal behavior of mmWave channels caused by the motion of the device are required, to cope with this problem. Accordingly, we employa deep neural network to analyze the temporal structure and patterns underlying in the time-varying channels and the signals acquired by inertial sensors. We propose a model based on long short termmemory (LSTM) that predicts the distribution of the future channel behavior based on a sequence of input signals available at the UE. This channel distribution is used to 1) control the sounding beams adaptively for the future channel state and 2) update the channel estimate through the measurement update step under a sequential Bayesian estimation framework. Our experimental results demonstrate that the proposed method achieves a significant performance gain over the conventional beam tracking methods under various mobility scenarios.
translated by 谷歌翻译
由于其低复杂性和鲁棒性,机器学习(ML)吸引了对物理层设计问题的巨大研究兴趣,例如信道估计。通道估计通过ML需要在数据集上进行模型训练,该数据集通常包括作为输入和信道数据的接收的导频信号作为输出。在以前的作品中,模型培训主要通过集中式学习(CL)进行,其中整个训练数据集从基站(BS)的用户收集。这种方法引入了数据收集的巨大通信开销。在本文中,为了解决这一挑战,我们提出了一种用于频道估计的联邦学习(FL)框架。我们设计在用户的本地数据集上培训的卷积神经网络(CNN),而不将它们发送到BS。我们为常规和RIS(智能反射表面)开发了基于流的信道估计方案,辅助大规模MIMO(多输入多输出)系统,其中单个CNN为两种情况训练了两个不同的数据集。我们评估噪声和量化模型传输的性能,并表明所提出的方法提供大约16倍的开销比CL,同时保持令人满意的性能接近CL。此外,所提出的架构表现出比最先进的ML的估计误差较低。
translated by 谷歌翻译
受到深度神经网络(DNN)的显着学习和预测性能的启发,我们应用了一种特殊类型的DNN框架,称为模型驱动的深度展开神经网络,可重新配置智能表面(RIS) - 提出的毫米波(MMWAVE)单个-Input多输出(SIMO)系统。我们专注于上行链路级联信道估计,其中考虑了已知和固定基站组合和RIS相位控制矩阵用于收集观察。为了提高估计性能并降低训练开销,可以在深度展开方法中利用MMWave通道的固有通道稀疏性。验证所提出的深度展开网络架构可以优于最小二乘(LS)方法,其具有相对较小的训练开销和在线计算复杂性。
translated by 谷歌翻译
在空中杂种大规模多输入多输出(MIMO)和正交频施加多路复用(OFDM)系统中,如何设计具有有限的飞行员和反馈开销的光谱效率宽带多用户混合波束,这是具有挑战性的。为此,通过将关键传输模块建模为端到端(E2E)神经网络,本文提出了一个数据驱动的深度学习(DL)基于时间划分双工(TDD)的基于数据驱动的深度学习(DL)的统一混合边际框架和具有隐式通道状态信息(CSI)的频分隔双链(FDD)系统。对于TDD系统,提出的基于DL的方法共同对上行链路飞行员组合和下行链路混合光束模块作为E2E神经网络。在FDD系统中,我们将下行链路飞行员传输,上行链路CSI反馈和下行链路混合光束形成模块作为E2E神经网络建模。与分别处理不同模块的常规方法不同,提出的解决方案同时以总和速率作为优化对象优化了所有模块。因此,通过感知空对地面大规模MIMO-OFDM通道样本的固有属性,基于DL的E2E神经网络可以建立从通道到波束形式的映射函数,以便可以避免使用显式通道重建,以减少飞行员和反馈开销。此外,实用的低分辨率相变(PSS)引入了量化约束,从而导致训练神经网络时棘手的梯度反向传播。为了减轻阶段量化误差引起的性能损失,我们采用转移学习策略,以基于假定理想的无限分辨率PSS的预训练网络来进一步调整E2E神经网络。数值结果表明,我们的基于DL的方案比最先进的方案具有相当大的优势。
translated by 谷歌翻译
由于处理非covex公式的能力,深入研究深度学习(DL)技术以优化多用户多输入单输出(MU-MISO)下行链接系统。但是,现有的深神经网络(DNN)的固定计算结构在系统大小(即天线或用户的数量)方面缺乏灵活性。本文开发了一个双方图神经网络(BGNN)框架,这是一种可扩展的DL溶液,旨在多端纳纳波束形成优化。首先,MU-MISO系统以两分图为特征,其中两个不相交的顶点集(由传输天线和用户组成)通过成对边缘连接。这些顶点互连状态是通过通道褪色系数建模的。因此,将通用的光束优化过程解释为重量双分图上的计算任务。这种方法将波束成型的优化过程分为多个用于单个天线顶点和用户顶点的子操作。分离的顶点操作导致可扩展的光束成型计算,这些计算不变到系统大小。顶点操作是由一组DNN模块实现的,这些DNN模块共同构成了BGNN体系结构。在所有天线和用户中都重复使用相同的DNN,以使所得的学习结构变得灵活地适合网络大小。 BGNN的组件DNN在许多具有随机变化的网络尺寸的MU-MISO配置上进行了训练。结果,训练有素的BGNN可以普遍应用于任意的MU-MISO系统。数值结果验证了BGNN框架比常规方法的优势。
translated by 谷歌翻译
我们考虑无上行赠款非正交多访问(NOMA)中的多用户检测(MUD)问题,其中访问点必须确定活动互联网(IoT)设备的总数和正确的身份他们传输的数据。我们假设IoT设备使用复杂的扩散序列并以随机访问的方式传输信息,按照爆发 - 距离模型,其中一些物联网设备以高概率在多个相邻的时间插槽中传输其数据,而另一些物联网设备在帧中仅传输一次。利用时间相关性,我们提出了一个基于注意力的双向长期记忆(BILSTM)网络来解决泥浆问题。 Bilstm网络使用前向和反向通过LSTM创建设备激活历史记录的模式,而注意机制为设备激活点提供了基本背景。通过这样做,遵循了层次途径,以在无拨款方案中检测主动设备。然后,通过利用复杂的扩散序列,对估计的活动设备进行了盲数据检测。所提出的框架不需要对设备稀疏水平和执行泥浆的通道的先验知识。结果表明,与现有的基准方案相比,提议的网络的性能更好。
translated by 谷歌翻译
Channel estimation is a critical task in multiple-input multiple-output (MIMO) digital communications that substantially effects end-to-end system performance. In this work, we introduce a novel approach for channel estimation using deep score-based generative models. A model is trained to estimate the gradient of the logarithm of a distribution and is used to iteratively refine estimates given measurements of a signal. We introduce a framework for training score-based generative models for wireless MIMO channels and performing channel estimation based on posterior sampling at test time. We derive theoretical robustness guarantees for channel estimation with posterior sampling in single-input single-output scenarios, and experimentally verify performance in the MIMO setting. Our results in simulated channels show competitive in-distribution performance, and robust out-of-distribution performance, with gains of up to $5$ dB in end-to-end coded communication performance compared to supervised deep learning methods. Simulations on the number of pilots show that high fidelity channel estimation with $25$% pilot density is possible for MIMO channel sizes of up to $64 \times 256$. Complexity analysis reveals that model size can efficiently trade performance for estimation latency, and that the proposed approach is competitive with compressed sensing in terms of floating-point operation (FLOP) count.
translated by 谷歌翻译
通过大量多输入和多重输出实现的许多性能增长取决于发射机(基站)下链路通道状态信息(CSI)的准确性,这通常是通过在接收器(用户终端)估算并馈入的。到发射器。 CSI反馈的开销占据了大量的上行链路带宽资源,尤其是当传输天线数量较大时。基于深度学习(DL)的CSI反馈是指基于DL的自动编码器的CSI压缩和重建,并且可以大大减少反馈开销。在本文中,提供了有关该主题的最新研究的全面概述,首先是在CSI反馈中广泛使用的基本DL概念,然后对一些现有的基于DL的反馈作品进行分类和描述。重点是新型的神经网络体系结构和沟通专家知识的利用来提高CSI反馈准确性。还介绍了有关CSI反馈和CSI反馈与其他通信模块的联合设计的作品,并讨论了一些实际问题,包括培训数据集收集,在线培训,复杂性,概括和标准化效果。在本文的最后,确定了与未来无线通信系统中基于DL的CSI反馈相关的一些挑战和潜在的研究方向。
translated by 谷歌翻译
可重新配置的智能表面(RIS)是未来无线通信系统的新兴技术。在这项工作中,我们考虑由RIS启用的下行链路空间多路复用,以获得加权和速率(WSR)最大化。在文献中,大多数解决方案使用交替的基于梯度的优化,具有中等性能,高复杂性和有限的可扩展性。我们建议应用完全卷积的网络(FCN)来解决这个问题,最初是为图像的语义分割而设计的。 RIS的矩形形状和具有相邻RIS天线的通道的空间相关性由于它们之间的短距离而鼓励我们将其应用于RIS配置。我们设计一组通道功能,包括通过RIS和Direct通道的级联通道。在基站(BS)中,可分离的最小均方平方误差(MMSE)预编码器用于预测,然后应用加权最小均方误差(WMMSE)预编码器以进行微调,这是不增强的,更复杂的,但实现更好的表现。评价结果表明,该解决方案具有更高的性能,允许比基线更快的评估。因此,它可以更好地缩放到大量的天线,推进RIS更接近实际部署的步骤。
translated by 谷歌翻译
给定有限数量的训练数据样本的分类的基本任务被考虑了具有已知参数统计模型的物理系统。基于独立的学习和统计模型的分类器面临使用小型训练集实现分类任务的主要挑战。具体地,单独依赖基于物理的统计模型的分类器通常遭受它们无法适当地调整底层的不可观察的参数,这导致系统行为的不匹配表示。另一方面,基于学习的分类器通常依赖于来自底层物理过程的大量培训数据,这在最实际的情况下可能不可行。本文提出了一种混合分类方法 - 被称为亚牙线的菌丝 - 利用基于物理的统计模型和基于学习的分类器。所提出的解决方案基于猜想,即通过融合它们各自的优势,刺鼠线将减轻与基于学习和统计模型的分类器的各个方法相关的挑战。所提出的混合方法首先使用可用(次优)统计估计程序来估计不可观察的模型参数,随后使用基于物理的统计模型来生成合成数据。然后,培训数据样本与基于学习的分类器中的合成数据结合到基于神经网络的域 - 对抗训练。具体地,为了解决不匹配问题,分类器将从训练数据和合成数据的映射学习到公共特征空间。同时,培训分类器以在该空间内找到判别特征,以满足分类任务。
translated by 谷歌翻译
随着Terahertz(THZ)信号产生和辐射方法的最新进展,关节通信和传感应用正在塑造无线系统的未来。为此,预计将在用户设备设备上携带THZ光谱,以识别感兴趣的材料和气态组件。 THZ特异性的信号处理技术应补充这种对THZ感应的重新兴趣,以有效利用THZ频带。在本文中,我们介绍了这些技术的概述,重点是信号预处理(标准的正常差异归一化,最小值 - 最大归一化和Savitzky-Golay滤波),功能提取(主成分分析,部分最小二乘,t,T,T部分,t部分,t部分正方形,T - 分布的随机邻居嵌入和非负矩阵分解)和分类技术(支持向量机器,k-nearest邻居,判别分析和天真的贝叶斯)。我们还通过探索他们在THZ频段的有希望的传感能力来解决深度学习技术的有效性。最后,我们研究了在联合通信和传感的背景下,研究方法的性能和复杂性权衡;我们激励相应的用例,并在该领域提供未来的研究方向。
translated by 谷歌翻译
提出了一种新型可重构智能表面辅助的多机器人网络,其中多个移动机器人通过非正交多重访问(NOMA)提供了多个移动机器人(AP)。目的是通过共同优化机器人的轨迹和NOMA解码顺序,RIS的相移系数以及AP的功率分配,从而最大化多机器人系统的整个轨迹的总和率机器人的位置和每个机器人的服务质量(QoS)。为了解决这个问题,提出了一个集成的机器学习(ML)方案,该方案结合了长期记忆(LSTM) - 自动进取的集成移动平均线(ARIMA)模型和Duel Duel Double Deep Q-network(D $^{3} $ QN)算法。对于机器人的初始和最终位置预测,LSTM-ARIMA能够克服非平稳和非线性数据序列的梯度销售问题。为了共同确定相移矩阵和机器人的轨迹,调用D $^{3} $ qn用于解决动作值高估的问题。基于提议的方案,每个机器人都基于整个轨迹的最大总和率持有全局最佳轨迹,该轨迹揭示了机器人为整个轨迹设计追求长期福利。数值结果表明:1)LSTM-ARIMA模型提供了高精度预测模型; 2)提出的d $^{3} $ qn算法可以实现快速平均收敛; 3)具有较高分辨率位的RI提供的轨迹比率比低分辨率比特更大; 4)与RIS AID的正交对应物相比,RIS-NOMA网络的网络性能卓越。
translated by 谷歌翻译
最近,基于深层神经网络(DNN)的物理层通信技术引起了极大的兴趣。尽管模拟实验已经验证了它们增强通信系统和出色性能的潜力,但对理论分析的关注很少。具体而言,物理层中的大多数研究都倾向于专注于DNN模型在无线通信问题上的应用,但理论上不了解DNN在通信系统中的工作方式。在本文中,我们旨在定量分析为什么DNN可以在物理层中与传统技术相比,并在计算复杂性方面提高其成本。为了实现这一目标,我们首先分析基于DNN的发射器的编码性能,并将其与传统发射器进行比较。然后,我们理论上分析了基于DNN的估计器的性能,并将其与传统估计器进行比较。第三,我们调查并验证在信息理论概念下基于DNN的通信系统中如何播放信息。我们的分析开发了一种简洁的方式,可以在物理层通信中打开DNN的“黑匣子”,可用于支持基于DNN的智能通信技术的设计,并有助于提供可解释的性能评估。
translated by 谷歌翻译
由于其快速和低功率配置,可重新配置的智能表面(RISS)最近被视为未来无线网络的节能解决方案,这在实现大规模连通性和低延迟通信方面具有增加的潜力。基于RIS的系统中的准确且低空的通道估计是通常的RIS单元元素及其独特的硬件约束,这是最关键的挑战之一。在本文中,我们专注于RIS授权的多用户多用户多输入单输出(MISO)上行链路通信系统的上行链路,并根据并行因子分解提出了一个通道估计框架,以展开所得的级联通道模型。我们为基站和RIS之间的渠道以及RIS与用户之间的渠道提供了两种迭代估计算法。一个基于交替的最小二乘(ALS),而另一个使用向量近似消息传递到迭代的迭代中,从估计的向量重建了两个未知的通道。为了从理论上评估基于ALS的算法的性能,我们得出了其估计值CRAM \'ER-RAO BOND(CRB)。我们还通过估计的通道和基本站的不同预码方案讨论了可实现的总和率计算。我们的广泛仿真结果表明,我们的算法表现优于基准方案,并且ALS技术可实现CRB。还证明,使用估计通道的总和率总是在各种设置下达到完美通道的总和,从而验证了提出的估计算法的有效性和鲁棒性。
translated by 谷歌翻译