在分散的优化中,通信网络的节点每个都具有局部目标函数,并使用基于八卦的方法进行通信,以最大程度地减少这些每节点函数的平均值。尽管同步算法受到图表中的一些慢节点或边缘的影响(\ emph {straggler问题}),但众所周知,它们的异步对应物很难参数化。实际上,到目前为止,它们针对具有异质通信和计算延迟的网络的收敛属性已经违反了分析。在本文中,我们使用\ emph {Continuized}框架来分析具有延迟的网络中的异步算法。我们的方法对收敛时间及其对网络中异质延迟的依赖性的精确表征。我们的连续框架受益于连续和离散世界中最好的:它适用的算法基于事件驱动的更新。因此,它们本质上是离散的,因此很容易实现。然而,他们的分析本质上是连续的,部分依赖于延迟的ODE理论。此外,我们的算法实现了\ emph {异步加速}:它们的收敛速率受到局部延迟加权的网络图的特征控制,而不是以前的分析中的网络范围最差的延迟。因此,我们的方法享有改善对散乱者的鲁棒性。
translated by 谷歌翻译
分散和联合学习的关键挑战之一是设计算法,这些算法有效地处理跨代理商的高度异构数据分布。在本文中,我们在数据异质性下重新审视分散的随机梯度下降算法(D-SGD)的分析。我们在D-SGD的收敛速率上展示了新数量的关键作用,称为\ emph {邻居异质性}。通过结合通信拓扑结构和异质性,我们的分析阐明了这两个分散学习中这两个概念之间的相互作用较低。然后,我们认为邻里的异质性提供了一种自然标准,可以学习数据依赖性拓扑结构,以减少(甚至可以消除)数据异质性对D-SGD收敛时间的有害影响。对于与标签偏度分类的重要情况,我们制定了学习这样一个良好拓扑的问题,例如我们使用Frank-Wolfe算法解决的可拖动优化问题。如一组模拟和现实世界实验所示,我们的方法提供了一种设计稀疏拓扑的方法,可以在数据异质性下平衡D-SGD的收敛速度和D-SGD的触电沟通成本。
translated by 谷歌翻译
我们考虑分散的优化问题,其中许多代理通过在基础通信图上交换来最大程度地减少其本地功能的平均值。具体而言,我们将自己置于异步模型中,其中只有一个随机部分在每次迭代时执行计算,而信息交换可以在所有节点之间进行,并以不对称的方式进行。对于此设置,我们提出了一种算法,该算法结合了整个网络上梯度跟踪和差异的差异。这使每个节点能够跟踪目标函数梯度的平均值。我们的理论分析表明,在预期混合矩阵的轻度连通性条件下,当局部目标函数强烈凸面时,算法会汇聚。特别是,我们的结果不需要混合矩阵是双随机的。在实验中,我们研究了一种广播机制,该机制将信息从计算节点传输到其邻居,并确认我们方法在合成和现实世界数据集上的线性收敛性。
translated by 谷歌翻译
分散的优化在机器学习方面越来越受欢迎,其可伸缩性和效率。直观地,它也应提供更好的隐私保证,因为节点只能观察到网络图中其邻居发送的消息。但是,正式化和量化这一收益是具有挑战性的:现有结果通常仅限于当地差异隐私(LDP)保证忽略权力下放的优势。在这项工作中,我们介绍了成对网络差异隐私,这是一种放松的LDP,该隐藏率捕获了一个事实,即从节点$ u $到节点$ v $的隐私泄漏可能取决于它们在图中的相对位置。然后,我们分析局部噪声注入与固定和随机通信图上的(简单或随机)八卦方案的组合。我们还得出了一种差异化的分散优化算法,该算法在局部梯度下降步骤和八卦平均之间进行交替。我们的结果表明,我们的算法放大隐私保证是图表中节点之间距离的函数,与受信任策展人的隐私性权衡取舍相匹配,直到明确取决于图形拓扑的因素。最后,我们通过有关合成和现实世界数据集的实验来说明我们的隐私收益。
translated by 谷歌翻译
这项工作审查了旨在在通信约束下运行的自适应分布式学习策略。我们考虑一个代理网络,必须从持续观察流数据来解决在线优化问题。代理商实施了分布式合作策略,其中允许每个代理商与其邻居执行本地信息交换。为了应对通信约束,必须不可避免地压缩交换信息。我们提出了一种扩散策略,昵称为ACTC(适应 - 压缩 - 然后组合),其依赖于以下步骤:i)每个代理执行具有恒定步长大小的单独随机梯度更新的适应步骤; ii)一种压缩步骤,它利用最近引入的随机压缩操作员;和III)每个代理组合从其邻居接收的压缩更新的组合步骤。这项工作的区别要素如下。首先,我们专注于自适应策略,其中常数(而不是递减)阶梯大小对于实时响应非间断变化至关重要。其次,我们考虑一般的指导图表和左随机组合政策,使我们能够增强拓扑和学习之间的相互作用。第三,与对所有个人代理的成本职能承担强大的凸起的相关作品相比,我们只需要在网络水平的强大凸起,即使单个代理具有强凸的成本,剩余的代理商也不满足凸起成本。第四,我们专注于扩散(而不是共识)战略。在压缩信息的苛刻设置下,建立ACTC迭代在所需的优化器周围波动,在相邻代理之间交换的比特方面取得了显着的节省。
translated by 谷歌翻译
遗憾已被广泛用作评估分布式多代理系统在线优化算法的性能的首选指标。但是,与代理相关的数据/模型变化可以显着影响决策,并需要在代理之间达成共识。此外,大多数现有的作品都集中在开发(强烈或非严格地)凸出的方法上,对于一般非凸损失的分布式在线优化中的遗憾界限,几乎没有得到很少的结果。为了解决这两个问题,我们提出了一种新型的综合遗憾,并使用新的基于网络的基于遗憾的度量标准来评估分布式在线优化算法。我们具体地定义了复合遗憾的静态和动态形式。通过利用我们的综合遗憾的动态形式,我们开发了一种基于共识的在线归一化梯度(CONGD)的伪convex损失方法,事实证明,它显示了与最佳器路径变化的规律性术语有关的透明性行为。对于一般的非凸损失,我们首先阐明了基于最近进步的分布式在线非凸学习的遗憾,因此没有确定性算法可以实现sublinear的遗憾。然后,我们根据离线优化的Oracle开发了分布式的在线非凸优化(Dinoco),而无需进入梯度。迪诺科(Dinoco)被证明是统一的遗憾。据我们所知,这是对一般分布在线非convex学习的第一个遗憾。
translated by 谷歌翻译
我们通过两种类型 - 主/工人(因此集中)架构(因此集中)架构和网格化(因此分散)网络,研究(强)凸起(强)凸起(强)凸起的鞍点问题(SPPS)的解决方案方法。由于统计数据相似度或其他,假设每个节点处的本地功能是相似的。我们为求解SPP的相当一般算法奠定了较低的复杂性界限。我们表明,在$ \ omega \ big(\ delta \ cdot \ delta / \ mu \ cdot \ log(1 / varepsilon)\ big)$ rounds over over over exoptimally $ \ epsilon> 0 $ over over master / workers网络通信,其中$ \ delta> 0 $测量本地功能的相似性,$ \ mu $是它们的强凸起常数,$ \ delta $是网络的直径。较低的通信复杂性绑定在网状网络上读取$ \ omega \ big(1 / {\ sqrt {\ rho}} \ cdot {\ delta} / {\ mu} \ cdot \ log(1 / varepsilon)\ big)$ ,$ \ rho $是用于邻近节点之间通信的八卦矩阵的(归一化)EIGENGAP。然后,我们提出算法与较低限制的网络(最多为日志因子)匹配。我们评估所提出的算法对强大的逻辑回归问题的有效性。
translated by 谷歌翻译
当任何延迟较大时,异步随机梯度下降(SGD)的现有分析显着降低,给人的印象是性能主要取决于延迟。相反,无论梯度中的延迟如何,我们都证明,我们可以更好地保证相同的异步SGD算法,而不是仅取决于用于实现算法的平行设备的数量。我们的保证严格比现有分析要好,我们还认为,异步SGD在我们考虑的设置中优于同步Minibatch SGD。为了进行分析,我们介绍了基于“虚拟迭代”和延迟自适应步骤的新颖递归,这使我们能够为凸面和非凸面目标得出最先进的保证。
translated by 谷歌翻译
我们考虑一个多代理网络,其中每个节点具有随机(本地)成本函数,这取决于该节点的决策变量和随机变量,并且进一步的相邻节点的判定变量是成对受约束的。网络具有总体目标函数,其在节点处的本地成本函数的预期值ack,以及网络的总体目标是将该聚合目标函数的最小化解决方案最小化为所有成对约束。这将在节点级别使用分散的信息和本地计算来实现,其中仅具有相邻节点允许的压缩信息的交换。该文件开发算法,并在节点上获得两个不同型号的本地信息可用性模型的性能界限:(i)样本反馈,其中每个节点可以直接访问局部随机变量的样本,以评估其本地成本,(ii)babrit反馈,其中无随机变量的样本不可用,但只有每个节点可用的两个随机点处的本地成本函数的值可用。对于两种模型,具有邻居之间的压缩通信,我们开发了分散的骑马点算法,从没有通信压缩的那些没有不同(符号意义)的表现;具体而言,我们表明,与全局最小值和违反约束的偏差是由$ \ mathcal {o}的大约限制(t ^ { - \ frac {1} {2}})$和$ \ mathcal {o} (t ^ { - \ frac {1} {4}})分别为$ t $是迭代次数。本文中提供的数值例子证实了这些界限并证明了所提出的方法的通信效率。
translated by 谷歌翻译
机器学习已开始在许多应用中发挥核心作用。这些应用程序中的许多应用程序通常还涉及由于设计约束(例如多元系统)或计算/隐私原因(例如,在智能手机数据上学习),这些数据集分布在多个计算设备/机器上。这样的应用程序通常需要以分散的方式执行学习任务,其中没有直接连接到所有节点的中央服务器。在现实世界中的分散设置中,由于设备故障,网络攻击等,节点容易出现未发现的故障,这可能会崩溃非稳固的学习算法。本文的重点是在发生拜占庭失败的节点的存在下对分散学习的鲁棒化。拜占庭故障模型允许故障节点任意偏离其预期行为,从而确保设计最健壮的算法的设计。但是,与分布式学习相反,对分散学习中拜占庭式的弹性的研究仍处于起步阶段。特别是,现有的拜占庭式分散学习方法要么不能很好地扩展到大规模的机器学习模型,要么缺乏统计收敛性可确保有助于表征其概括错误。在本文中,引入了一个可扩展的,拜占庭式的分散的机器学习框架,称为拜占庭的分散梯度下降(桥梁)。本文中还提供了强烈凸出问题和一类非凸问题的算法和统计收敛保证。此外,使用大规模的分散学习实验来确定桥梁框架是可扩展的,并且为拜占庭式弹性凸和非convex学习提供了竞争结果。
translated by 谷歌翻译
我们开发了一个通用框架,统一了几种基于梯度的随机优化方法,用于在集中式和分布式场景中,用于经验风险最小化问题。该框架取决于引入的增强图的引入,该图形由对样品进行建模和边缘建模设备设备间通信和设备内随机梯度计算。通过正确设计增强图的拓扑结构,我们能够作为特殊情况恢复为著名的本地-SGD和DSGD算法,并提供了统一的方差还原(VR)和梯度跟踪(GT)方法(例如Saga) ,本地-SVRG和GT-SAGA。我们还提供了统一的收敛分析,以依靠适当的结构化lyapunov函数,以实现平滑和(强烈的)凸目标,并且获得的速率可以恢复许多现有算法的最著名结果。速率结果进一步表明,VR和GT方法可以有效地消除设备内部和跨设备内的数据异质性,从而使算法与最佳解决方案的确切收敛性。数值实验证实了本文中的发现。
translated by 谷歌翻译
We introduce a class of first-order methods for smooth constrained optimization that are based on an analogy to non-smooth dynamical systems. Two distinctive features of our approach are that (i) projections or optimizations over the entire feasible set are avoided, in stark contrast to projected gradient methods or the Frank-Wolfe method, and (ii) iterates are allowed to become infeasible, which differs from active set or feasible direction methods, where the descent motion stops as soon as a new constraint is encountered. The resulting algorithmic procedure is simple to implement even when constraints are nonlinear, and is suitable for large-scale constrained optimization problems in which the feasible set fails to have a simple structure. The key underlying idea is that constraints are expressed in terms of velocities instead of positions, which has the algorithmic consequence that optimizations over feasible sets at each iteration are replaced with optimizations over local, sparse convex approximations. In particular, this means that at each iteration only constraints that are violated are taken into account. The result is a simplified suite of algorithms and an expanded range of possible applications in machine learning.
translated by 谷歌翻译
Network data are ubiquitous in modern machine learning, with tasks of interest including node classification, node clustering and link prediction. A frequent approach begins by learning an Euclidean embedding of the network, to which algorithms developed for vector-valued data are applied. For large networks, embeddings are learned using stochastic gradient methods where the sub-sampling scheme can be freely chosen. Despite the strong empirical performance of such methods, they are not well understood theoretically. Our work encapsulates representation methods using a subsampling approach, such as node2vec, into a single unifying framework. We prove, under the assumption that the graph is exchangeable, that the distribution of the learned embedding vectors asymptotically decouples. Moreover, we characterize the asymptotic distribution and provided rates of convergence, in terms of the latent parameters, which includes the choice of loss function and the embedding dimension. This provides a theoretical foundation to understand what the embedding vectors represent and how well these methods perform on downstream tasks. Notably, we observe that typically used loss functions may lead to shortcomings, such as a lack of Fisher consistency.
translated by 谷歌翻译
本文评价用机器学习问题的数值优化方法。由于机器学习模型是高度参数化的,我们专注于适合高维优化的方法。我们在二次模型上构建直觉,以确定哪种方法适用于非凸优化,并在凸函数上开发用于这种方法的凸起函数。随着随机梯度下降和动量方法的这种理论基础,我们试图解释为什么机器学习领域通常使用的方法非常成功。除了解释成功的启发式之外,最后一章还提供了对更多理论方法的广泛审查,这在实践中并不像惯例。所以在某些情况下,这项工作试图回答这个问题:为什么默认值中包含的默认TensorFlow优化器?
translated by 谷歌翻译
我们介绍了一个框架 - Artemis-,以解决分布式或联合设置中的学习问题,并具有通信约束和设备部分参与。几位工人(随机抽样)使用中央服务器执行优化过程来汇总其计算。为了减轻通信成本,Artemis允许在两个方向上(从工人到服务器,相反)将发送的信息与内存机制相结合。它改进了仅考虑单向压缩(对服务器)的现有算法,或在压缩操作员上使用非常强大的假设,并且通常不考虑设备的部分参与。我们在非I.I.D中的随机梯度(仅在最佳点界定的噪声方差)提供了快速的收敛速率(线性最高到阈值)。设置,突出显示内存对单向和双向压缩的影响,分析Polyak-Ruppert平均。我们在分布中使用收敛性,以获得渐近方差的下限,该方差突出了实际的压缩极限。我们提出了两种方法,以解决设备部分参与的具有挑战性的案例,并提供实验结果以证明我们的分析有效性。
translated by 谷歌翻译
本文研究了在线性季节控制设置中权力下放程度与分布式控制器的性能之间的权衡。我们在图形和分布式控制器上研究一个互连代理系统,称为$ \ kappa $分布式控件,该系统使代理可以根据距离$ \ kappa $在基础图上的状态信息做出控制决策。该控制器可以使用参数$ \ kappa $调整其权力下放化程度,从而允许表征权力下放和绩效之间的关系。我们表明,在温和的假设下,包括可稳定性,可检测性和次数增长的图形条件,$ \ kappa $分布式控制和集中式最佳控制之间的性能差异在$ \ kappa $中呈指数级较小。该结果表明,分布式控制可以通过中等程度的权力下放实现近乎最佳的性能,因此它是用于大规模网络系统的有效控制器体系结构。
translated by 谷歌翻译
在分散的优化环境中,$ n $优化节点网络中的每个代理$ i $都具有私有函数$ f_i $,而节点与邻居进行通信以合作最大程度地减少聚合目标$ \ sum_ {i = 1}^n f_i $。在这种情况下,同步节点的更新会影响大量的沟通开销和计算成本,因此,最近的许多文献都集中在异步优化算法的分析和设计上,其中代理在任意时间激活和通信而无需不需要全球同步执行器。尽管如此,在大多数关于该主题的工作中,活动节点选择一个基于固定概率(例如,随机均匀)接触的邻居,这种选择忽略了在激活时忽略优化景观。取而代之的是,在这项工作中,我们介绍了一项优化感知的选择规则,该规则选择具有最高双重成本提高的邻居(与手头问题的基于共识的双重化有关的数量)。该方案与用于坐标更新的高斯 - 南威尔(GS)规则的坐标下降(CD)方法有关;但是,在我们的环境中,在每次迭代时只能访问一部分坐标(因为每个节点都只能与其直接邻居进行通信),因此有关GS方法的现有文献不适用。为了克服这一难度,我们开发了一个新的分析框架,用于平稳且强烈凸出$ f_i $,该框架涵盖了设定的CD算法类 - 该类直接适用于分散的场景,但不限于它们 - 我们 - 我们表明所提出的固定GS规则在网络中达到最高度的速度(在高度连接的图中为$ \ theta(n)$的速度)。随后在使用合成数据的数值实验中验证了我们的理论分析预测的加速。
translated by 谷歌翻译
在机器学习模型的数据并行优化中,工人协作以改善对模型的估计:更准确的梯度使他们可以使用更大的学习率并更快地优化。我们考虑所有工人从同一数据集进行采样的设置,并通过稀疏图(分散)进行通信。在这种情况下,当前的理论无法捕获现实世界行为的重要方面。首先,通信图的“光谱差距”不能预测其(深)学习中的经验表现。其次,当前的理论并不能解释合作可以比单独培训更大的学习率。实际上,它规定了较小的学习率,随着图表的变化而进一步降低,无法解释无限图中的收敛性。本文旨在在工人共享相同的数据分布时绘制出稀疏连接的分布式优化的准确图片。我们量化图形拓扑如何影响二次玩具问题中的收敛性,并为一般平滑和(强烈)凸目标提供理论结果。我们的理论与深度学习中的经验观察相匹配,并准确地描述了不同图形拓扑的相对优点。
translated by 谷歌翻译
我们研究了趋势过滤的多元版本,称为Kronecker趋势过滤或KTF,因为设计点以$ D $维度形成格子。 KTF是单变量趋势过滤的自然延伸(Steidl等,2006; Kim等人,2009; Tibshirani,2014),并通过最大限度地减少惩罚最小二乘问题,其罚款术语总和绝对(高阶)沿每个坐标方向估计参数的差异。相应的惩罚运算符可以编写单次趋势过滤惩罚运营商的Kronecker产品,因此名称Kronecker趋势过滤。等效,可以在$ \ ell_1 $ -penalized基础回归问题上查看KTF,其中基本功能是下降阶段函数的张量产品,是一个分段多项式(离散样条)基础,基于单变量趋势过滤。本文是Sadhanala等人的统一和延伸结果。 (2016,2017)。我们开发了一套完整的理论结果,描述了$ k \ grone 0 $和$ d \ geq 1 $的$ k ^ {\ mathrm {th}} $ over kronecker趋势过滤的行为。这揭示了许多有趣的现象,包括KTF在估计异构平滑的功能时KTF的优势,并且在$ d = 2(k + 1)$的相位过渡,一个边界过去(在高维对 - 光滑侧)线性泡沫不能完全保持一致。我们还利用Tibshirani(2020)的离散花键来利用最近的结果,特别是离散的花键插值结果,使我们能够将KTF估计扩展到恒定时间内的任何偏离晶格位置(与晶格数量的大小无关)。
translated by 谷歌翻译
最近,随机梯度下降(SGD)及其变体已成为机器学习(ML)问题大规模优化的主要方法。已经提出了各种策略来调整步骤尺寸,从自适应步骤大小到启发式方法,以更改每次迭代中的步骤大小。此外,动力已被广泛用于ML任务以加速训练过程。然而,我们对它们的理论理解存在差距。在这项工作中,我们开始通过为一些启发式优化方法提供正式保证并提出改进的算法来缩小这一差距。首先,我们分析了凸面和非凸口设置的Adagrad(延迟Adagrad)步骤大小的广义版本,这表明这些步骤尺寸允许算法自动适应随机梯度的噪声水平。我们首次显示延迟Adagrad的足够条件,以确保梯度几乎融合到零。此外,我们对延迟的Adagrad及其在非凸面设置中的动量变体进行了高概率分析。其次,我们用指数级和余弦的步骤分析了SGD,在经验上取得了成功,但缺乏理论支持。我们在平滑和非凸的设置中为它们提供了最初的收敛保证,有或没有polyak-{\ l} ojasiewicz(pl)条件。我们还显示了它们在PL条件下适应噪声的良好特性。第三,我们研究动量方法的最后迭代。我们证明了SGD的最后一个迭代的凸设置中的第一个下限,并以恒定的动量。此外,我们研究了一类跟随基于领先的领导者的动量算法,并随着动量和收缩的更新而增加。我们表明,他们的最后一个迭代具有最佳的收敛性,用于无约束的凸随机优化问题。
translated by 谷歌翻译