计算纳什均衡在多智能体游戏中是博弈论和计算机科学界面的长期挑战。众所周知,N个玩家和K策略中的一般正常形式游戏需要指数空间只是简单地写下。这种多代理的这种诅咒促使简洁游戏的研究可以有效地写下来。简洁游戏的规范示例是图形游戏,该图形游戏将播放器塑造为图形中的节点,只与他们的邻居与马尔可夫随机字段直接类似的邻居进行交互。图形游戏在无线,金融和社交网络中找到了应用程序。然而,计算图形游戏的纳什平衡已经证明了具有挑战性。即使对于PolyATRIX游戏,也可以将对代理人的资助的模型作为与代理邻居的交互的交互之和,所以证明计算epsilon近似NASH平衡是epsilon的PPAD,用于epsilon小于常数。这项工作的重点是通过考虑平均水平图模型i.e随机图来避免这种计算硬度。我们提供了一种用于计算PolyAtrix游戏的ePsilon近似NASH平衡的QuaSiewolynomial时间近似方案(QPTA),其具有高于Poly(k,1 / epsilon,ln(n))$的随机图。此外,通过相同的运行时间,我们可以计算epsilon - 近似的纳什均衡,即epsilon - 近似于游戏任何纳什均衡的最大社会福利。我们的主要技术创新是一种用于纳什均衡问题的新型等级凸面计划的“加速舍入”。我们加速的舍入也为MAX-2CSP的同一类随机图中的MAX-2CSP提供了更快的算法,这可能具有独立兴趣。
translated by 谷歌翻译
迄今为止,游戏中的学习研究主要集中在正常形式游戏上。相比之下,我们以广泛的形式游戏(EFG),尤其是在许多代理商远远落后的EFG中对学习的理解,尽管它们与许多现实世界的应用更加接近。我们考虑了网络零和广泛表单游戏的天然类别,该游戏结合了代理收益的全球零和属性,图形游戏的有效表示以及EFG的表达能力。我们检查了这些游戏中乐观梯度上升(OGA)的收敛属性。我们证明,这种在线学习动力学的时间平均值表现出$ O(1/t)$ rate contergence convergence contergence contergence。此外,我们表明,对于某些与游戏有关的常数$ c> 0 $,日常行为也与速率$ o(c^{ - t})$收敛到nash。
translated by 谷歌翻译
大多数算法研究到目前为止,多智能经纪信息设计的研究专注于没有代理商外部性的限制情况;一些例外调查了真正的战略游戏,如零和游戏和二价格拍卖,但只关注最佳的公共信令。本文启动了\ emph {public}和\ emph {privy}信号传导的算法信息设计,其中of基本的外部性,即单例拥塞游戏,在今天的数字经济中的应用范围广,机器调度,路由,对于公共和私人信令等,我们表明,当资源数量是常数时,可以有效地计算最佳信息设计。为了我们的知识,这是一系列高效的\ EMPH {精确}算法,用于在简明地代表的许多玩家游戏中的信息设计。我们的结果符合新颖的技术,如开发某些“减少形式”,以便在公共信令中紧凑地表征均衡或代表私人信令中的球员边际信仰。当有许多资源时,我们会显示计算难扰性结果。为了克服多个均衡问题,这里我们介绍了均衡 - \ EMPH {忽视}硬度的新概念,这条规定了计算良好信令方案的任何可能性,而不管均衡选择规则如何。
translated by 谷歌翻译
计算NASH平衡策略是多方面强化学习中的一个核心问题,在理论和实践中都受到广泛关注。但是,到目前为止,可证明的保证金仅限于完全竞争性或合作的场景,或者在大多数实际应用中实现难以满足的强大假设。在这项工作中,我们通过调查Infinite-Horizo​​n \ Emph {对抗性团队Markov Games},这是一场自然而充分动机的游戏,其中一组相同兴奋的玩家 - 在没有任何明确的情况下,这是一个自然而有动机的游戏,这是一场自然而有动机的游戏,而偏离了先前的结果。协调或交流 - 正在与对抗者竞争。这种设置允许对零和马尔可夫潜在游戏进行统一处理,并作为模拟更现实的战略互动的一步,这些互动具有竞争性和合作利益。我们的主要贡献是第一种计算固定$ \ epsilon $ - Approximate Nash Equilibria在对抗性团队马尔可夫游戏中具有计算复杂性的算法,在游戏的所有自然参数中都是多项式的,以及$ 1/\ epsilon $。拟议的算法特别自然和实用,它基于为团队中的每个球员执行独立的政策梯度步骤,并与对手侧面的最佳反应同时;反过来,通过解决精心构造的线性程序来获得对手的政策。我们的分析利用非标准技术来建立具有非convex约束的非线性程序的KKT最佳条件,从而导致对诱导的Lagrange乘数的自然解释。在此过程中,我们大大扩展了冯·斯坦格尔(Von Stengel)和科勒(GEB`97)引起的对抗(正常形式)团队游戏中最佳政策的重要特征。
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
我们开发了一种高效的随机块模型中的弱恢复算法。该算法与随机块模型的Vanilla版本的最佳已知算法的统计保证匹配。从这个意义上讲,我们的结果表明,随机块模型没有稳健性。我们的工作受到最近的银行,Mohanty和Raghavendra(SODA 2021)的工作,为相应的区别问题提供了高效的算法。我们的算法及其分析显着脱离了以前的恢复。关键挑战是我们算法的特殊优化景观:种植的分区可能远非最佳意义,即完全不相关的解决方案可以实现相同的客观值。这种现象与PCA的BBP相转变的推出效应有关。据我们所知,我们的算法是第一个在非渐近设置中存在这种推出效果的鲁棒恢复。我们的算法是基于凸优化的框架的实例化(与平方和不同的不同),这对于其他鲁棒矩阵估计问题可能是有用的。我们的分析的副产物是一种通用技术,其提高了任意强大的弱恢复算法的成功(输入的随机性)从恒定(或缓慢消失)概率以指数高概率。
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
在这项工作中,我们研究了具有对抗性节点损坏的随机块模型中社区发现的问题。我们的主要结果是一种有效的算法,该算法可以忍受$ \ epsilon $ - 损坏和达到错误$ o(\ epsilon) + e^{ - \ frac {c} {2} {2}(1 \ pm o(1))} $其中$ c =(\ sqrt {a} - \ sqrt {b})^2 $是信噪比,$ a/n $和$ b/n $是互发和intra-intra-intra-社区连接概率分别。这些界限基本上与无损坏的SBM的最小值相匹配。我们还为$ \ mathbb {z} _2 $ -Synchronization提供了可靠的算法。我们算法的核心是一个新的半决赛程序,它使用全局信息来鲁棒提高粗糙聚类的准确性。此外,我们表明我们的算法是双重的,因为它们在更具挑战性的噪声模型中起作用,该模型将对抗性腐败与无限制的单调变化混合在一起,从半随机模型中。
translated by 谷歌翻译
In this work, we give efficient algorithms for privately estimating a Gaussian distribution in both pure and approximate differential privacy (DP) models with optimal dependence on the dimension in the sample complexity. In the pure DP setting, we give an efficient algorithm that estimates an unknown $d$-dimensional Gaussian distribution up to an arbitrary tiny total variation error using $\widetilde{O}(d^2 \log \kappa)$ samples while tolerating a constant fraction of adversarial outliers. Here, $\kappa$ is the condition number of the target covariance matrix. The sample bound matches best non-private estimators in the dependence on the dimension (up to a polylogarithmic factor). We prove a new lower bound on differentially private covariance estimation to show that the dependence on the condition number $\kappa$ in the above sample bound is also tight. Prior to our work, only identifiability results (yielding inefficient super-polynomial time algorithms) were known for the problem. In the approximate DP setting, we give an efficient algorithm to estimate an unknown Gaussian distribution up to an arbitrarily tiny total variation error using $\widetilde{O}(d^2)$ samples while tolerating a constant fraction of adversarial outliers. Prior to our work, all efficient approximate DP algorithms incurred a super-quadratic sample cost or were not outlier-robust. For the special case of mean estimation, our algorithm achieves the optimal sample complexity of $\widetilde O(d)$, improving on a $\widetilde O(d^{1.5})$ bound from prior work. Our pure DP algorithm relies on a recursive private preconditioning subroutine that utilizes the recent work on private mean estimation [Hopkins et al., 2022]. Our approximate DP algorithms are based on a substantial upgrade of the method of stabilizing convex relaxations introduced in [Kothari et al., 2022].
translated by 谷歌翻译
具有最佳最差案例保证的高维最近邻居搜索(NNS)的索引算法是基于随机位置敏感的哈希(LSH)及其衍生物。在实践中,存在许多启发式方法来“学习”最佳的索引方法,以加速NNS,至关重要地适应给定数据集的结构。通常,这些启发式方法的表现优于实际数据集上的基于LSH的算法,但是,几乎总是以失去对抗性查询的正确性或稳健性能的保证,或适用于具有假定额外结构/模型的数据集。在本文中,我们为锤式空间设计了一种NNS算法,该算法最差的案例确保了基本上与理论算法相匹配的算法,同时优化了与数据集的结构(思考实例 - 最佳算法)的结构,以在最低效果上的性能上的性能询问。我们评估了该算法在理论上和实际上对给定数据集进行优化的能力。在理论方面,我们展示了一种自然设置(数据集模型),其中我们的算法比标准理论的算法要好得多。在实用方面,我们运行的实验表明我们的算法在对MNIST和Imagenet数据集的表现最差的查询上的回忆更好。
translated by 谷歌翻译
最近,Daskalakis,Fisselson和Golowich(DFG)(Neurips`21)表明,如果所有代理在多人普通和正常形式游戏中采用乐观的乘法权重更新(OMWU),每个玩家的外部遗憾是$ o(\ textrm {polylog}(t))$ the游戏的$重复。我们从外部遗憾扩展到内部遗憾并交换后悔,从而建立了以$ \ tilde {o}的速率收敛到近似相关均衡的近似相关均衡(t ^ { - 1})$。由于陈和彭(神经潜行群岛20),这实质上提高了以陈和彭(NEURIPS20)的相关均衡的相关均衡率,并且在无遗憾的框架内是最佳的 - 以$ $ $ to to polylogarithmic因素。为了获得这些结果,我们开发了用于建立涉及固定点操作的学习动态的高阶平滑的新技术。具体而言,我们确定STOLTZ和LUGOSI(Mach Learn`05)的无内部遗憾学习动态在组合空间上的无外部后悔动态等效地模拟。这使我们可以在指数大小的集合上交易多项式大型马尔可夫链的计算,用于在指数大小的集合上的(更良好的良好)的线性变换,使我们能够利用类似的技术作为DGF到接近最佳地结合内心遗憾。此外,我们建立了$ O(\ textrm {polylog}(t))$ no-swap-recreet遗憾的blum和mansour(bm)的经典算法(JMLR`07)。我们这样做是通过基于Cauchy积分的技术来介绍DFG的更有限的组合争论。除了对BM的近乎最优遗憾保证的阐明外,我们的论点还提供了进入各种方式的洞察,其中可以在分析更多涉及的学习算法中延长和利用DFG的技术。
translated by 谷歌翻译
我们给出了\ emph {list-codobable协方差估计}的第一个多项式时间算法。对于任何$ \ alpha> 0 $,我们的算法获取输入样本$ y \ subseteq \ subseteq \ mathbb {r}^d $ size $ n \ geq d^{\ mathsf {poly}(1/\ alpha)} $获得通过对抗损坏I.I.D的$(1- \ alpha)n $点。从高斯分布中的样本$ x $ size $ n $,其未知平均值$ \ mu _*$和协方差$ \ sigma _*$。在$ n^{\ mathsf {poly}(1/\ alpha)} $ time中,它输出$ k = k(\ alpha)=(1/\ alpha)^{\ mathsf {poly}的常数大小列表(1/\ alpha)} $候选参数,具有高概率,包含$(\ hat {\ mu},\ hat {\ sigma})$,使得总变化距离$ tv(\ Mathcal {n}(n})(n}(n})( \ mu _*,\ sigma _*),\ Mathcal {n}(\ hat {\ mu},\ hat {\ sigma}))<1-o _ {\ alpha}(1)$。这是距离的统计上最强的概念,意味着具有独立尺寸误差的参数的乘法光谱和相对Frobenius距离近似。我们的算法更普遍地适用于$(1- \ alpha)$ - 任何具有低度平方总和证书的分布$ d $的损坏,这是两个自然分析属性的:1)一维边际和抗浓度2)2度多项式的超收缩率。在我们工作之前,估计可定性设置的协方差的唯一已知结果是针对Karmarkar,Klivans和Kothari(2019),Raghavendra和Yau(2019和2019和2019和2019和2019年)的特殊情况。 2020年)和巴克西(Bakshi)和科塔里(Kothari)(2020年)。这些结果需要超级物理时间,以在基础维度中获得任何子构误差。我们的结果意味着第一个多项式\ emph {extcect}算法,用于列表可解码的线性回归和子空间恢复,尤其允许获得$ 2^{ - \ Mathsf { - \ Mathsf {poly}(d)} $多项式时间错误。我们的结果还意味着改进了用于聚类非球体混合物的算法。
translated by 谷歌翻译
给定尺寸$ d $中的独立标准高斯点$ v_1,\ ldots,v_n $,对于$(n,d)$的值(n,d)$的值很高,概率很高,同时通过所有要点?将椭圆形拟合到随机点的基本问题与低级别矩阵分解,独立的组件分析和主成分分析有连接。基于有力的数值证据,桑德森,帕里洛和威尔斯基[Proc。关于决策和控制会议,第6031-6036页,2013年]猜想,椭圆形拟合问题的问题从可行的到不可行的$ n $增加,并在$ n \ sim d^2/4处急剧阈值$。我们通过为某些$ n = \ omega(\,d^2/\ log^5(d)\,)$构建合适的椭圆形来解决这个猜想,从而改善了Ghosh等人的先前工作。 [Proc。关于计算机科学基础的研讨会,第954-965、2020页],需要$ n = o(d^{3/2})$。我们的证明证明了Saunderson等人的最小二乘结构的可行性。使用对特定非标准随机矩阵的特征向量和特征值进行仔细的分析。
translated by 谷歌翻译
我们认为$ k \ geq 2 $高斯组件的混合物具有良好分离的未知方式和未知的手段和未知的协方差(相同的协方差,即独特的组件在大多数$ k { - c} $的统计重叠中具有统计重叠足够的常数$ c \ ge 1 $。以前的统计查询下限[DKS17]给出了甚至区分此类混合物的正式证据,这些混合物可能是难以指示的(以美元为单位)。我们表明,如果允许混合重量呈指数小,则只能出现这种硬度,并且对于多项式下界混合权重的非琐碎的算​​法保证,可以在准多项式时间内进行。具体地,我们在最小混合重量中基于具有运行时间准多项式的正方形方法的算法。该算法可以可靠地区分$ K \ GE 2 $良好分离的高斯组件和(纯)高斯分布的混合物。作为证书,该算法计算输入样品的两分,其分离一对混合物组分,即,两侧的两侧含有至少一个组分的大多数样本点。对于Colinear意味着的特殊情况,我们的算法输出了输入样本的$ K $群集,其与混合物的组件大致一致。对我们的结果进行了重大挑战是,与最先前的高斯混合物的最先前结果不同,它们似乎对富集的抗体异常值不同。原因是,即使对于具有多项式下有界混合重量的混合物,这种异常值也可以模拟指数小的混合重量。关键技术成分是在对应于最小混合重量中的两种仔细选择的顺序对数的瞬间的多项式的矩分开的分离性高斯部件的分离方向的表征。
translated by 谷歌翻译
We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.
translated by 谷歌翻译
我们研究了小组测试问题,其目标是根据合并测试的结果,确定一组k感染的人,这些k含有稀有疾病,这些人在经过测试中至少有一个受感染的个体时返回阳性的结果。团体。我们考虑将个人分配给测试的两个不同的简单随机过程:恒定柱设计和伯努利设计。我们的第一组结果涉及基本统计限制。对于恒定柱设计,我们给出了一个新的信息理论下限,这意味着正确识别的感染者的比例在测试数量越过特定阈值时会经历急剧的“全或全或无所不包”的相变。对于Bernoulli设计,我们确定解决相关检测问题所需的确切测试数量(目的是区分小组测试实例和纯噪声),改善Truong,Aldridge和Scarlett的上限和下限(2020)。对于两个小组测试模型,我们还研究了计算有效(多项式时间)推理程序的能力。我们确定了解决检测问题的低度多项式算法所需的精确测试数量。这为在少量稀疏度的检测和恢复问题中都存在固有的计算统计差距提供了证据。值得注意的是,我们的证据与Iliopoulos和Zadik(2021)相反,后者预测了Bernoulli设计中没有计算统计差距。
translated by 谷歌翻译
在本文中,我们考虑图对对齐问题,这是恢复的问题,给定两个图形,节点之间的一对一映射,最大化边缘重叠。此问题可以被视为众所周知的图形同构问题的嘈杂版本,并出现在许多应用中,包括社交网络Deanymation和蜂窝生物学。我们这里的焦点是部分恢复,即,我们寻找一个一对一的映射,这对图形的节点的一小部分而不是在所有这些上都是正确的,并且我们假设两个输入图对问题是相关的ERD \ h {o} sr \'enyi参数$(n,q,s)$。我们的主要贡献是在$(n,q,s)$给出必要和充分的条件,在其中部分恢复是可能的,因为节点N $的节点数量的概率很高。特别是,我们表明,在某些额外的假设下,可以在$ NQS = \ \ \θ(1)$制度中实现部分恢复。
translated by 谷歌翻译
我们给出了第一个多项式算法来估计$ d $ -variate概率分布的平均值,从$ \ tilde {o}(d)$独立的样本受到纯粹的差异隐私的界限。此问题的现有算法无论是呈指数运行时间,需要$ \ OMEGA(D ^ {1.5})$样本,或仅满足较弱的集中或近似差分隐私条件。特别地,所有先前的多项式算法都需要$ d ^ {1+ \ omega(1)} $ samples,以保证“加密”高概率,1-2 ^ { - d ^ {\ omega(1) $,虽然我们的算法保留$ \ tilde {o}(d)$ SAMPS复杂性即使在此严格设置中也是如此。我们的主要技术是使用强大的方块方法(SOS)来设计差异私有算法的新方法。算法的证据是在高维算法统计数据中的许多近期作品中的一个关键主题 - 显然需要指数运行时间,但可以通过低度方块证明可以捕获其分析可以自动变成多项式 - 时间算法具有相同的可证明担保。我们展示了私有算法的类似证据现象:工作型指数机制的实例显然需要指数时间,但可以用低度SOS样张分析的指数时间,可以自动转换为多项式差异私有算法。我们证明了捕获这种现象的元定理,我们希望在私人算法设计中广泛使用。我们的技术还在高维度之间绘制了差异私有和强大统计数据之间的新连接。特别是通过我们的校验算法镜头来看,几次研究的SOS证明在近期作品中的算法稳健统计中直接产生了我们差异私有平均估计算法的关键组成部分。
translated by 谷歌翻译
We study the problem of training a principal in a multi-agent general-sum game using reinforcement learning (RL). Learning a robust principal policy requires anticipating the worst possible strategic responses of other agents, which is generally NP-hard. However, we show that no-regret dynamics can identify these worst-case responses in poly-time in smooth games. We propose a framework that uses this policy evaluation method for efficiently learning a robust principal policy using RL. This framework can be extended to provide robustness to boundedly rational agents too. Our motivating application is automated mechanism design: we empirically demonstrate our framework learns robust mechanisms in both matrix games and complex spatiotemporal games. In particular, we learn a dynamic tax policy that improves the welfare of a simulated trade-and-barter economy by 15%, even when facing previously unseen boundedly rational RL taxpayers.
translated by 谷歌翻译
模仿学习(IL)是解决顺序决策问题的一般学习范式。互动模仿学习,学习者可以在其中与专家示范的互动查询,与其离线同行或强化学习相比,已证明可以实现可证明的卓越样本效率保证。在这项工作中,我们研究了基于分类的在线模仿学习(abbrev。$ \ textbf {coil} $),以及在这种情况下设计Oracle有效的遗憾最小化算法的基本可行性,重点是一般的不可思议的情况。我们做出以下贡献:(1)我们表明,在$ \ textbf {coil} $问题中,任何适当的在线学习算法都不能保证总体上遗憾的是; (2)我们提出了$ \ textbf {logger} $,一种不当的在线学习算法框架,通过利用混合策略类的新定义,将$ \ textbf {coil} $降低到在线线性优化; (3)我们在$ \ textbf {logger} $框架中设计了两种Oracle效率算法,它们享受不同的样本和互动的复杂性权衡,并进行有限样本分析以显示其对幼稚行为克隆的改进; (4)我们表明,在标准复杂性理论假设下,在$ \ textbf {logger} $框架中,有效的动态遗憾最小化是不可行的。我们的工作将基于分类的在线模仿学习(一个重要的IL设置)置于更牢固的基础上。
translated by 谷歌翻译