组合优化的硬度(CO)问题阻碍收集用于监督学习的解决方案。但是,由于缺乏标记的数据,因此很难学习CO问题的神经网络,因为训练很容易被捕获到本地Optima。在这项工作中,我们为CO问题提出了一个简单但有效的退火培训框架。特别是,我们将CO问题转化为公正的基于能量的模型(EBM)。我们仔细选择了罚款条款,以使EBM尽可能平滑。然后,我们训练图形神经网络以近似EBM。为了防止训练在初始化附近被卡在本地Optima上,我们引入了退火损失功能。实验评估表明,我们的退火训练框架获得了实质性改进。在四种类型的CO问题中,我们的方法在合成图和现实世界图上都比其他无监督神经方法更好地达到了性能。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
Steiner树问题(STP)在图中旨在在连接给定的顶点集的图表中找到一个最小权重的树。它是一种经典的NP - 硬组合优化问题,具有许多现实世界应用(例如,VLSI芯片设计,运输网络规划和无线传感器网络)。为STP开发了许多精确和近似算法,但它们分别遭受高计算复杂性和弱案例解决方案保证。还开发了启发式算法。但是,它们中的每一个都需要应用域知识来设计,并且仅适用于特定方案。最近报道的观察结果,同一NP-COLLECLIAL问题的情况可能保持相同或相似的组合结构,但主要在其数据中不同,我们调查将机器学习技术应用于STP的可行性和益处。为此,我们基于新型图形神经网络和深增强学习设计了一种新型模型瓦坎。 Vulcan的核心是一种新颖的紧凑型图形嵌入,将高瞻度图形结构数据(即路径改变信息)转换为低维矢量表示。鉴于STP实例,Vulcan使用此嵌入来对其路径相关的信息进行编码,并基于双层Q网络(DDQN)将编码的图形发送到深度加强学习组件,以找到解决方案。除了STP之外,Vulcan还可以通过将解决方案(例如,SAT,MVC和X3C)来减少到STP来找到解决方案。我们使用现实世界和合成数据集进行广泛的实验,展示了vulcan的原型,并展示了它的功效和效率。
translated by 谷歌翻译
我们提出了一个通用图形神经网络体系结构,可以作为任何约束满意度问题(CSP)作为末端2端搜索启发式训练。我们的体系结构可以通过政策梯度下降进行无监督的培训,以纯粹的数据驱动方式为任何CSP生成问题的特定启发式方法。该方法基于CSP的新型图表,既是通用又紧凑的,并且使我们能够使用一个GNN处理所有可能的CSP实例,而不管有限的Arity,关系或域大小。与以前的基于RL的方法不同,我们在全局搜索动作空间上运行,并允许我们的GNN在随机搜索的每个步骤中修改任何数量的变量。这使我们的方法能够正确利用GNN的固有并行性。我们进行了彻底的经验评估,从随机数据(包括图形着色,Maxcut,3-SAT和Max-K-Sat)中学习启发式和重要的CSP。我们的方法表现优于先验的神经组合优化的方法。它可以在测试实例上与常规搜索启发式竞争,甚至可以改善几个数量级,结构上比训练中看到的数量级更为复杂。
translated by 谷歌翻译
该博士学位论文的中心对象是在计算机科学和统计力学领域的不同名称中以不同名称而闻名的。在计算机科学中,它被称为“最大切割问题”,这是著名的21个KARP的原始NP硬性问题之一,而物理学的相同物体称为Ising Spin Glass模型。这种丰富的结构的模型通常是减少或重新制定计算机科学,物理和工程学的现实问题。但是,准确地求解此模型(查找最大剪切或基态)可能会留下一个棘手的问题(除非$ \ textit {p} = \ textit {np} $),并且需要为每一个开发临时启发式学特定的实例家庭。离散和连续优化之间的明亮而美丽的连接之一是一种基于半限定编程的圆形方案,以最大程度地切割。此过程使我们能够找到一个近乎最佳的解决方案。此外,该方法被认为是多项式时间中最好的。在本论文的前两章中,我们研究了旨在改善舍入方案的局部非凸照。在本文的最后一章中,我们迈出了一步,并旨在控制我们想要在前几章中解决的问题的解决方案。我们在Ising模型上制定了双层优化问题,在该模型中,我们希望尽可能少地调整交互作用,以使所得ISING模型的基态满足所需的标准。大流行建模出现了这种问题。我们表明,当相互作用是非负的时,我们的双层优化是在多项式时间内使用凸编程来解决的。
translated by 谷歌翻译
表达性和计算便宜的两分图神经网络(GNN)已被证明是基于深度学习的混合成分线性程序(MILP)求解器的重要组成部分。最近的工作证明了此类GNN在分支结合(B&B)求解器中取代分支(可变选择)启发式方面的有效性。这些GNN经过训练,离线和集合,以模仿一个非常好但计算昂贵的分支启发式,强大的分支。鉴于B&B会导致子隔间树,我们问(a)目标启发式启发式在B&B树的邻近节点之间是否存在很强的依赖性,并且(b)如果是这样,我们是否可以将它们合并到我们的培训程序。具体来说,我们发现,有了强大的分支启发式,孩子节点的最佳选择通常是父母的第二好的选择。我们将其称为“回顾”现象。令人惊讶的是,Gasse等人的典型分支GNN。 (2019年)经常错过这个简单的“答案”。为了通过将回顾现象纳入GNN来更紧密地模仿目标行为,我们提出了两种方法:(a)标准跨凝性损失函数的目标平滑,(b)添加父级(PAT)target(PAT)回顾量学期。最后,我们提出了一个模型选择框架,以结合更难构建的目标,例如在最终模型中解决时间。通过对标准基准实例进行广泛的实验,我们表明我们的提案导致B&B树大小的22%减少,并且在解决时间的解决方案中提高了15%。
translated by 谷歌翻译
The design of good heuristics or approximation algorithms for NP-hard combinatorial optimization problems often requires significant specialized knowledge and trial-and-error. Can we automate this challenging, tedious process, and learn the algorithms instead? In many real-world applications, it is typically the case that the same optimization problem is solved again and again on a regular basis, maintaining the same problem structure but differing in the data. This provides an opportunity for learning heuristic algorithms that exploit the structure of such recurring problems. In this paper, we propose a unique combination of reinforcement learning and graph embedding to address this challenge. The learned greedy policy behaves like a meta-algorithm that incrementally constructs a solution, and the action is determined by the output of a graph embedding network capturing the current state of the solution. We show that our framework can be applied to a diverse range of optimization problems over graphs, and learns effective algorithms for the Minimum Vertex Cover, Maximum Cut and Traveling Salesman problems.
translated by 谷歌翻译
组合优化问题可以通过启发式算法(例如模拟退火(SA))来解决,该算法旨在通过热搜索空间在大型搜索空间中找到全局最小值溶液。该算法通过马尔可夫链蒙特卡洛技术生成新的解决方案。后者可能会导致严重的局限性,例如缓慢的收敛性和在较小温度下保持在同一局部搜索空间内的趋势。为了克服这些缺点,我们使用了变异经典退火(VCA)框架,该框架将自回归复发性神经网络(RNN)与传统退火相结合来彼此独立于样品解决方案。在本文中,我们证明了使用VCA作为解决现实世界优化问题的方法的潜力。与SA相比,我们探索了VCA的性能,以解决三个流行的优化问题:最大切割问题(最大切割),护士调度问题(NSP)和旅行推销员问题(TSP)。对于所有三个问题,我们发现VCA在渐近极限中的平均表现要优于SA。有趣的是,我们达到了TSP最高可达256美元的城市的大型系统尺寸。我们得出的结论是,在最佳情况下,当SA无法找到最佳解决方案时,VCA可以作为一个很好的选择。
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
越来越多的机器学习方法用于解决旅行推销员问题。但是,这些方法通常需要解决训练或使用需要大量调整的复杂强化学习方法的实例。为了避免这些问题,我们引入了一种新颖的无监督学习方法。我们使用针对TSP的整数线性程序的放松来构建不需要正确实例标签的损耗函数。随着离散化的可变,其最小值与最佳或近乎最佳的解决方案一致。此外,此损耗函数是可区分的,因此可以直接用于训练神经网络。我们将损失函数与图形神经网络和欧几里得和非对称TSP的设计受控实验一起使用。我们的方法优于监督学习不需要大型标记数据集的优势。此外,我们的方法的性能超过了不对称TSP的强化学习,并且与欧几里得实例的强化学习相当。与增强学习相比,我们的方法也更稳定,更容易训练。
translated by 谷歌翻译
近似组合优化已成为量子计算机最有前途的应用领域之一,特别是近期的应用领域之一。在这项工作中,我们专注于求解最大切割问题的量子近似优化算法(QAOA)。具体而言,我们解决了QAOA中的两个问题,如何选择初始参数,以及如何随后培训参数以找到最佳解决方案。对于前者来说,我们将图形神经网络(GNN)作为QAOA参数的初始化例程,在热启动技术中添加到文献。我们不仅显示了GNN方法概括,而且不仅可以增加图形尺寸,还可以增加图形大小,这是其他热启动技术无法使用的功能。为了培训QAOA,我们测试了几个优化员以获得MaxCut问题。这些包括在文献中提出的量子感知/不可知论者,我们还包括机器学习技术,如加强和元学习。通过纳入这些初始化和优化工具包,我们展示了如何培训QAOA作为端到端可分散的管道。
translated by 谷歌翻译
机器学习(ML)管道中的组合优化(CO)层是解决数据驱动决策任务的强大工具,但它们面临两个主要挑战。首先,CO问题的解通常是其客观参数的分段常数函数。鉴于通常使用随机梯度下降对ML管道进行训练,因此缺乏斜率信息是非常有害的。其次,标准ML损失在组合设置中不能很好地工作。越来越多的研究通过各种方法解决了这些挑战。不幸的是,缺乏维护良好的实现会减慢采用CO层的速度。在本文的基础上,我们对CO层介绍了一种概率的观点,该观点自然而然地是近似分化和结构化损失的构建。我们从文献中恢复了许多特殊情况的方法,我们也得出了新方法。基于这个统一的观点,我们提出了inferpopt.jl,一个开源的朱莉娅软件包,1)允许将任何具有线性物镜的Co Oracle转换为可区分的层,以及2)定义足够的损失以训练包含此类层的管道。我们的图书馆使用任意优化算法,并且与朱莉娅的ML生态系统完全兼容。我们使用视频游戏地图上的探索问题来证明其能力。
translated by 谷歌翻译
图形上的组合优化问题(COP)是优化的基本挑战。强化学习(RL)最近成为解决这些问题的新框架,并证明了令人鼓舞的结果。但是,大多数RL解决方案都采用贪婪的方式来逐步构建解决方案,因此不可避免地对动作序列构成不必要的依赖性,并且需要许多特定于问题的设计。我们提出了一个通用的RL框架,该框架不仅表现出最先进的经验表现,而且还推广到各种各样的警察。具体而言,我们将状态定义为解决问题实例的解决方案,并将操作作为对该解决方案的扰动。我们利用图形神经网络(GNN)为给定的问题实例提取潜在表示,然后应用深Q学习以获得通过翻转或交换顶点标签逐渐完善解决方案的策略。实验是在最大$ k $ cut和旅行推销员问题上进行的,并且针对一系列基于学习的启发式基线实现了绩效改善。
translated by 谷歌翻译
随着深度学习技术的快速发展,各种最近的工作试图应用图形神经网络(GNN)来解决诸如布尔满足(SAT)之类的NP硬问题,这表明了桥接机器学习与象征性差距的潜力。然而,GNN预测的解决方案的质量并未在文献中进行很好地研究。在本文中,我们研究了GNNS在学习中解决最大可满足性(MaxSAT)问题的能力,从理论和实践角度来看。我们构建了两种GNN模型来学习来自基准的MaxSAT实例的解决方案,并显示GNN通过实验评估解决MaxSAT问题的有吸引力。我们还基于算法对准理论,我们还提出了GNNS可以在一定程度上学会解决MaxSAT问题的影响的理论解释。
translated by 谷歌翻译
我们展示了如何使用图形神经网络来解决规范的图形着色问题。我们将颜色框架为多类节点分类问题,并基于统计物理Potts模型利用无监督的培训策略。对其他多级问题(例如社区检测,数据聚类和最低集团封面问题)的概括是简单的。我们提供数值基准结果,并通过端到端的应用程序说明了我们的方法,用于在全面的编码程序框架内实现现实世界调度案例。我们的优化方法在PAR或优于现有求解器上执行,并能够扩展到数百万变量的问题。
translated by 谷歌翻译
将离散域上的功能集成到神经网络中是开发其推理离散对象的能力的关键。但是,离散域是(1)自然不适合基于梯度的优化,并且(2)与依赖于高维矢量空间中表示形式的深度学习体系结构不相容。在这项工作中,我们解决了设置功能的两个困难,这些功能捕获了许多重要的离散问题。首先,我们开发了将设置功能扩展到低维连续域的框架,在该域中,许多扩展是自然定义的。我们的框架包含许多众所周知的扩展,作为特殊情况。其次,为避免不良的低维神经网络瓶颈,我们将低维扩展转换为高维空间中的表示形式,从半际计划进行组合优化的成功中获得了灵感。从经验上讲,我们观察到扩展对无监督的神经组合优化的好处,特别是具有高维其表示。
translated by 谷歌翻译
Influence Maximization (IM) is a classical combinatorial optimization problem, which can be widely used in mobile networks, social computing, and recommendation systems. It aims at selecting a small number of users such that maximizing the influence spread across the online social network. Because of its potential commercial and academic value, there are a lot of researchers focusing on studying the IM problem from different perspectives. The main challenge comes from the NP-hardness of the IM problem and \#P-hardness of estimating the influence spread, thus traditional algorithms for overcoming them can be categorized into two classes: heuristic algorithms and approximation algorithms. However, there is no theoretical guarantee for heuristic algorithms, and the theoretical design is close to the limit. Therefore, it is almost impossible to further optimize and improve their performance. With the rapid development of artificial intelligence, the technology based on Machine Learning (ML) has achieved remarkable achievements in many fields. In view of this, in recent years, a number of new methods have emerged to solve combinatorial optimization problems by using ML-based techniques. These methods have the advantages of fast solving speed and strong generalization ability to unknown graphs, which provide a brand-new direction for solving combinatorial optimization problems. Therefore, we abandon the traditional algorithms based on iterative search and review the recent development of ML-based methods, especially Deep Reinforcement Learning, to solve the IM problem and other variants in social networks. We focus on summarizing the relevant background knowledge, basic principles, common methods, and applied research. Finally, the challenges that need to be solved urgently in future IM research are pointed out.
translated by 谷歌翻译
在社交网络中找到有影响力的用户是一个基本问题,具有许多可能的应用程序。将社交网络视为图形,可以通过位于网络中给定数量的跳数内的邻居的数量来测量一组用户的影响,其中每个跳标标记了影响扩散的步骤。在本文中,我们将IM的问题减少到预算受限的D-Hop主导集合问题(KDDSP)。我们提出了一个统一的机器学习(ML)框架,FastCover,通过以无人监督的方式学习高效的贪婪策略来解决KDDSP。作为框架的一个关键组成部分,我们设计了一种新颖的图形神经网络(GNN)架构,图反转关注网络(GRAT),其捕获邻居之间的扩散过程。与用于组合优化问题的大多数启发式算法和并发ML框架不同,FastCover确定从GNN的一个正向传播的节点的分数确定整个种子集,并且在图形大小中具有时间复杂性准线性。综合图和现实世界社交网络的实验表明,FastCover通过并发算法呈现的更好或相当的质量来找到解决方案,同时实现超过1000x的加速。
translated by 谷歌翻译
We propose a geometric scattering-based graph neural network (GNN) for approximating solutions of the NP-hard maximum clique (MC) problem. We construct a loss function with two terms, one which encourages the network to find highly connected nodes and the other which acts as a surrogate for the constraint that the nodes form a clique. We then use this loss to train an efficient GNN architecture that outputs a vector representing the probability for each node to be part of the MC and apply a rule-based decoder to make our final prediction. The incorporation of the scattering transform alleviates the so-called oversmoothing problem that is often encountered in GNNs and would degrade the performance of our proposed setup. Our empirical results demonstrate that our method outperforms representative GNN baselines in terms of solution accuracy and inference speed as well as conventional solvers like Gurobi with limited time budgets. Furthermore, our scattering model is very parameter efficient with only $\sim$ 0.1\% of the number of parameters compared to previous GNN baseline models.
translated by 谷歌翻译
使用机器学习来求解组合优化(CO)问题是具有挑战性的,尤其是当数据未标记时。这项工作为CO问题提供了无监督的学习框架。我们的框架遵循标准的放松加能方法,并采用神经网络来参数放松的解决方案,以便简单的后传播可以端到端训练模型。我们的关键贡献是,观察到,如果放松的目标满足入门凹度,那么低优化损失就可以保证最终积分解决方案的质量。该观察结果显着扩大了受ERDOS概率方法启发的先前框架的适用性。特别是,该观察结果可以指导目标模型的设计,在这些应用程序中未明确给出目标,同时需要在先验中进行建模。我们通过解决合成图优化问题以及两个现实世界应用程序来评估我们的框架,包括电路设计中的资源分配和近似计算。我们的框架在很大程度上优于基于Na \“ {i}的放松,增强学习和Gumbel-Softmax技巧的基线。
translated by 谷歌翻译