需求预测的两个主要挑战是产品蚕食和长期预测。产品蚕食是一种现象,其中一些产品的高需求导致其他产品的销售额降低。长期预测涉及预测销售对战略业务目的至关重要的延长时间框架。此外,例如,传统方法,例如,复发性神经网络可能是无效的,其中火车数据大小很小,如本研究中的情况。这项工作提出了基于XGBoost的三阶段框架,解决了产品蚕食和相关的长期误差传播问题。与常规XGBoost算法相比,比较了所提出的三阶段基于XGBoost的框架的性能。
translated by 谷歌翻译
本文是我们的工作延伸,在那里我们提出了一种三阶段XGBoost算法,用于在产品钙化方案下预测销售额。以前我们根据我们的直觉开发了该模型,并提供了对其性能的实证证据。在这项研究中,我们将简要介绍算法,然后在其工作后面提供数学推理。
translated by 谷歌翻译
Platelet products are both expensive and have very short shelf lives. As usage rates for platelets are highly variable, the effective management of platelet demand and supply is very important yet challenging. The primary goal of this paper is to present an efficient forecasting model for platelet demand at Canadian Blood Services (CBS). To accomplish this goal, four different demand forecasting methods, ARIMA (Auto Regressive Moving Average), Prophet, lasso regression (least absolute shrinkage and selection operator) and LSTM (Long Short-Term Memory) networks are utilized and evaluated. We use a large clinical dataset for a centralized blood distribution centre for four hospitals in Hamilton, Ontario, spanning from 2010 to 2018 and consisting of daily platelet transfusions along with information such as the product specifications, the recipients' characteristics, and the recipients' laboratory test results. This study is the first to utilize different methods from statistical time series models to data-driven regression and a machine learning technique for platelet transfusion using clinical predictors and with different amounts of data. We find that the multivariate approaches have the highest accuracy in general, however, if sufficient data are available, a simpler time series approach such as ARIMA appears to be sufficient. We also comment on the approach to choose clinical indicators (inputs) for the multivariate models.
translated by 谷歌翻译
在本文中,我们介绍了蒙面的多步多变量预测(MMMF),这是一个新颖而普遍的自我监督学习框架,用于时间序列预测,并提供已知的未来信息。在许多真实世界的预测情况下,已知一些未来的信息,例如,在进行短期到中期的电力需求预测或进行飞机出发预测时的油价预测时,天气信息。现有的机器学习预测框架可以分为(1)基于样本的方法,在此方法中进行每个预测,以及(2)时间序列回归方法,其中未来信息未完全合并。为了克服现有方法的局限性,我们提出了MMMF,这是一个培训能够生成一系列输出的神经网络模型的框架,将过去的时间信息和有关未来的已知信息结合在一起,以做出更好的预测。实验在两个现实世界数据集上进行(1)中期电力需求预测,以及(2)前两个月的飞行偏离预测。他们表明,所提出的MMMF框架的表现不仅优于基于样本的方法,而且具有与完全相同的基本模型的现有时间序列预测模型。此外,一旦通过MMMF进行了神经网络模型,其推理速度与接受传统回归配方训练的相同模型的推理速度相似,从而使MMMF成为现有回归训练的时间序列的更好替代品,如果有一些可用的未来,信息。
translated by 谷歌翻译
间歇时间序列的分层预测是研究和实证研究中的挑战。庞大的研究侧重于提高每个层次结构的准确性,尤其是底部层次的间歇时间序列。然后,在每个层次结构上调和预测,以进一步提高整体性能。在本文中,我们提出了一种与分层对准方法的预测,该方法将底部水平预测视为可变的柔和预测,以确保在层次结构的上层上的预测精度。我们采用纯深度学习预测方法的N- BEATS对高层的连续时间序列和广泛使用的基于树的算法LightGBM为底层间歇时间序列。具有对准方法的分层预测是自下而上方法的简单且有效的变体,其占难以观察到底部水平的偏差。它允许在较低级别的次优预测保留更高的整体性能。该研究在本实证研究中由第一作者在M5预测准确性竞争期间开发,排名第二。该方法也是良好的商业战略规划有益。
translated by 谷歌翻译
The cyber-physical convergence is opening up new business opportunities for industrial operators. The need for deep integration of the cyber and the physical worlds establishes a rich business agenda towards consolidating new system and network engineering approaches. This revolution would not be possible without the rich and heterogeneous sources of data, as well as the ability of their intelligent exploitation, mainly due to the fact that data will serve as a fundamental resource to promote Industry 4.0. One of the most fruitful research and practice areas emerging from this data-rich, cyber-physical, smart factory environment is the data-driven process monitoring field, which applies machine learning methodologies to enable predictive maintenance applications. In this paper, we examine popular time series forecasting techniques as well as supervised machine learning algorithms in the applied context of Industry 4.0, by transforming and preprocessing the historical industrial dataset of a packing machine's operational state recordings (real data coming from the production line of a manufacturing plant from the food and beverage domain). In our methodology, we use only a single signal concerning the machine's operational status to make our predictions, without considering other operational variables or fault and warning signals, hence its characterization as ``agnostic''. In this respect, the results demonstrate that the adopted methods achieve a quite promising performance on three targeted use cases.
translated by 谷歌翻译
我们向Facebook先知推出了一位继任者,为可解释,可扩展和用户友好的预测框架制定了一个行业标准。随着时间序列数据的扩散,可说明的预测仍然是企业和运营决策的具有挑战性的任务。需要混合解决方案来弥合可解释的古典方法与可扩展深层学习模型之间的差距。我们将先知视为这样一个解决方案的前兆。然而,先知缺乏本地背景,这对于预测近期未来至关重要,并且由于其斯坦坦后代而挑战。 NeultProphet是一种基于Pytorch的混合预测框架,并用标准的深度学习方法培训,开发人员可以轻松扩展框架。本地上下文使用自动回归和协变量模块引入,可以配置为经典线性回归或作为神经网络。否则,NeultProphet保留了先知的设计理念,提供了相同的基本模型组件。我们的结果表明,NeultProcrophet在一组生成的时间序列上产生了相当或优质的质量的可解释的预测组件。 NeultProphet在各种各样的现实数据集合中占先知。对于中期预测,NeultProclecrophet将预测精度提高55%至92%。
translated by 谷歌翻译
电价是影响所有市场参与者决策的关键因素。准确的电价预测非常重要,并且由于各种因素,电价高度挥发性,电价也非常具有挑战性。本文提出了一项综合的长期经常性卷积网络(ILRCN)模型,以预测考虑到市场价格的大多数贡献属性的电力价格。所提出的ILRCN模型将卷积神经网络和长短期记忆(LSTM)算法的功能与所提出的新颖的条件纠错项相结合。组合的ILRCN模型可以识别输入数据内的线性和非线性行为。我们使用鄂尔顿批发市场价格数据以及负载型材,温度和其他因素来说明所提出的模型。使用平均绝对误差和准确性等性能/评估度量来验证所提出的ILRCN电价预测模型的性能。案例研究表明,与支持向量机(SVM)模型,完全连接的神经网络模型,LSTM模型和LRCN模型,所提出的ILRCN模型在电价预测中是准确和有效的电力价格预测。
translated by 谷歌翻译
在时间序列预测的背景下,常用做法是评估多种方法,并选择其中一种方法或用于产生最佳预测的合奏。然而,在多种方法中选择不同的集合仍然是当方法的数量增加时,仍然是经历组合爆炸的具有挑战性的任务。在需求预测或收入预测的背景下,这一挑战在大量时间序列以及由于不断变化的业务环境而获得的有限的历史数据点,进一步加剧。虽然深入学习预测方法旨在同时预测大量时间序列,但由于有限的历史可用,可能不会产生理想的结果,它们变得挑战。我们提出了一种通过在使用交叉验证的潜在时间序列上组合低级时间矩阵分解和最佳模型选择来预测短高维时间序列数据的框架。我们展示预测潜在因子与直接应用于时间序列的不同UNI变化模型相比,潜在因子导致显着的性能提升。在M4月数据集的截断版本上验证了性能,其中包含来自来自多个域的时间序列数据,显示该方法的一般适用性。此外,由于在将预测方法直接应用于高维数据集时通常是不切实际的潜在因子而言,可以将未来的分析师视图纳入未来的分析师观。
translated by 谷歌翻译
我们在多变量时间序列预测(MTSF)的域中制定了一个新的推理任务,称为变量子集预报(VSF),其中仅在推理过程中可用一小部分变量子集。由于长期数据丢失(例如,传感器故障)或列车 /测试之间的高 - >低资源域移动,因此在推理过程中没有变量。据我们所知,在文献中尚未研究MTSF模型在存在此类故障的情况下的稳健性。通过广泛的评估,我们首先表明,在VSF设置中,最新方法的性能显着降低。我们提出了一种非参数包装技术,该技术可以应用于任何现有的预测模型。通过在4个数据集和5个预测模型的系统实验中,我们表明我们的技术能够恢复模型的接近95 \%性能,即使仅存在15 \%的原始变量。
translated by 谷歌翻译
地下水位预测是一个应用时间序列预测任务,具有重要的社会影响,以优化水管理以及防止某些自然灾害:例如,洪水或严重的干旱。在文献中已经报告了机器学习方法以实现这项任务,但它们仅专注于单个位置的地下水水平的预测。一种全球预测方法旨在利用从各个位置的地下水级时序列序列,一次在一个地方或一次在几个地方产生预测。鉴于全球预测方法在著名的竞争中取得了成功,因此在地下水级别的预测上进行评估并查看它们与本地方法的比较是有意义的。在这项工作中,我们创建了一个1026地下水级时序列的数据集。每个时间序列都是由每日测量地下水水平和两个外源变量,降雨和蒸散量制成的。该数据集可向社区提供可重现性和进一步评估。为了确定最佳的配置,可以有效地预测完整的时间序列的地下水水平,我们比较了包括本地和全球时间序列预测方法在内的不同预测因子。我们评估了外源变量的影响。我们的结果分析表明,通过训练过去的地下水位和降雨数据的全球方法获得最佳预测。
translated by 谷歌翻译
随着Covid-19影响每个国家的全球和改变日常生活,预测疾病的传播的能力比任何先前的流行病更重要。常规的疾病 - 展开建模方法,隔间模型,基于对病毒的扩散的时空均匀性的假设,这可能导致预测到欠低,特别是在高空间分辨率下。本文采用替代技术 - 时空机器学习方法。我们提出了Covid-LSTM,一种基于长期短期内存深度学习架构的数据驱动模型,用于预测Covid-19在美国县级的发病率。我们使用每周数量的新阳性案例作为时间输入,以及来自Facebook运动和连通数据集的手工工程空间特征,以捕捉时间和空间的疾病的传播。 Covid-LSTM在我们的17周的评估期间优于Covid-19预测集线器集合模型(CovidHub-Ensemble),使其首先比一个或多个预测期更准确的模型。在4周的预测地平线上,我们的型号平均每县平均50例比CovidHub-Ensemble更准确。我们强调,在Covid-19之前,在Covid-19之前的数据驱动预测的未充分利用疾病传播的预测可能是由于以前疾病缺乏足够的数据,除了最近的时尚预测方法的机器学习方法的进步。我们讨论了更广泛的数据驱动预测的障碍,以及将来将使用更多的基于学习的模型。
translated by 谷歌翻译
Purpose: Traffic volume in empty container depots has been highly volatile due to external factors. Forecasting the expected container truck traffic along with having a dynamic module to foresee the future workload plays a critical role in improving the work efficiency. This paper studies the relevant literature and designs a forecasting model addressing the aforementioned issues. Methodology: The paper develops a forecasting model to predict hourly work and traffic volume of container trucks in an empty container depot using a Bayesian Neural Network based model. Furthermore, the paper experiments with datasets with different characteristics to assess the model's forecasting range for various data sources. Findings: The real data of an empty container depot is utilized to develop a forecasting model and to later verify the capabilities of the model. The findings show the performance validity of the model and provide the groundwork to build an effective traffic and workload planning system for the empty container depot in question. Originality: This paper proposes a Bayesian deep learning-based forecasting model for traffic and workload of an empty container depot using real-world data. This designed and implemented forecasting model offers a solution with which every actor in the container truck transportation benefits from the optimized workload.
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
我们基于技能评分,对确定性太阳预测进行了首次全面的荟萃分析,筛选了Google Scholar的1,447篇论文,并审查了320篇论文的全文以进行数据提取。用多元自适应回归样条模型,部分依赖图和线性回归构建和分析了4,758点的数据库。值得注意的是,分析说明了数据中最重要的非线性关系和交互项。我们量化了对重要变量的预测准确性的影响,例如预测范围,分辨率,气候条件,区域的年度太阳辐照度水平,电力系统大小和容量,预测模型,火车和测试集以及使用不同的技术和投入。通过控制预测之间的关键差异,包括位置变量,可以在全球应用分析的发现。还提供了该领域科学进步的概述。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
在线广告收入占发布者的收入流越来越多的份额,特别是对于依赖谷歌和Facebook等技术公司广告网络的中小型出版商而言。因此,出版商可能会从准确的在线广告收入预测中获益,以更好地管理其网站货币化战略。但是,只能获得自己的收入数据的出版商缺乏出版商广告总市场的整体视图,这反过来限制了他们在他们未来的在线广告收入中产生见解的能力。为了解决这一业务问题,我们利用了一个专有的数据库,包括来自各种各样的地区的大量出版商的Google Adsense收入。我们采用时间融合变压器(TFT)模型,这是一种新的基于关注的架构,以预测出版商的广告收入。我们利用多个协变量,不仅包括出版商自己的特征,还包括其他出版商的广告收入。我们的预测结果优于多个时间范围的几个基准深度学习时间系列预测模型。此外,我们通过分析可变重要性重量来识别显着的特征和自我注意重量来解释结果,以揭示持久的时间模式。
translated by 谷歌翻译
本文介绍了一个集成预测方法,通过减少特征和模型选择假设来显示M4Competitiation数据集的强劲结果,称为甜甜圈(不利用人为假设)。我们的假设减少,主要由自动生成的功能和更多样化的集合模型组成,显着优于Montero-Manso等人的统计特征的集合方法FForma。 (2020)。此外,我们用长短期内存网络(LSTM)AutoEncoder调查特征提取,并发现此类特征包含传统统计特征方法未捕获的重要信息。合奏加权模型使用LSTM功能和统计功能准确地结合模型。特征重要性和交互的分析表明,单独的统计数据的LSTM特征略有优势。聚类分析表明,不同的基本LSTM功能与大多数统计特征不同。我们还发现,通过使用新模型增强合奏来增加加权模型的解决方案空间是加权模型学习使用的东西,解释了准确性的一部分。最后,我们为集合的最佳组合和选择提供了正式的前后事实分析,通过M4数据集的线性优化量化差异。我们还包括一个简短的证据,模型组合优于模型选择,后者。
translated by 谷歌翻译
With the evolution of power systems as it is becoming more intelligent and interactive system while increasing in flexibility with a larger penetration of renewable energy sources, demand prediction on a short-term resolution will inevitably become more and more crucial in designing and managing the future grid, especially when it comes to an individual household level. Projecting the demand for electricity for a single energy user, as opposed to the aggregated power consumption of residential load on a wide scale, is difficult because of a considerable number of volatile and uncertain factors. This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem. LSTM and GRU are comparatively newer and among the most well-adopted deep learning approaches. The electricity consumption datasets were obtained from individual household smart meters. The comparison shows that the LSTM model performs better for home-level forecasting than alternative prediction techniques-GRU in this case. To compare the NN-based models with contrast to the conventional statistical technique-based model, ARIMA based model was also developed and benchmarked with LSTM and GRU model outcomes in this study to show the performance of the proposed model on the collected time series data.
translated by 谷歌翻译
We present Visuelle 2.0, the first dataset useful for facing diverse prediction problems that a fast-fashion company has to manage routinely. Furthermore, we demonstrate how the use of computer vision is substantial in this scenario. Visuelle 2.0 contains data for 6 seasons / 5355 clothing products of Nuna Lie, a famous Italian company with hundreds of shops located in different areas within the country. In particular, we focus on a specific prediction problem, namely short-observation new product sale forecasting (SO-fore). SO-fore assumes that the season has started and a set of new products is on the shelves of the different stores. The goal is to forecast the sales for a particular horizon, given a short, available past (few weeks), since no earlier statistics are available. To be successful, SO-fore approaches should capture this short past and exploit other modalities or exogenous data. To these aims, Visuelle 2.0 is equipped with disaggregated data at the item-shop level and multi-modal information for each clothing item, allowing computer vision approaches to come into play. The main message that we deliver is that the use of image data with deep networks boosts performances obtained when using the time series in long-term forecasting scenarios, ameliorating the WAPE and MAE by up to 5.48% and 7% respectively compared to competitive baseline methods. The dataset is available at https://humaticslab.github.io/forecasting/visuelle
translated by 谷歌翻译