安全部署到现实世界的机器学习模式通常是一个具有挑战性的过程。从特定地理位置获得的数据训练的模型往往会在询问其他地方获得的数据时失败,在仿真中培训的代理可以在部署在现实世界或新颖的环境中进行适应时,以及适合于拟合的神经网络人口可能会将一些选择偏见纳入其决策过程。在这项工作中,我们描述了(i)通过(i)识别和描述了不同误差来源的新信息 - 理论观点的数据转移问题,(ii)比较最近域概括和公平探讨的一些最有前景的目标分类文献。从我们的理论分析和实证评估中,我们得出结论,需要通过关于观察到的数据,用于校正的因素的仔细考虑和数据生成过程的结构来指导模型选择程序。
translated by 谷歌翻译
变异因素之间的相关性在现实数据中普遍存在。机器学习算法可能会受益于利用这种相关性,因为它们可以提高噪声数据的预测性能。然而,通常这种相关性不稳定(例如,它们可能在域,数据集或应用程序之间发生变化),我们希望避免利用它们。解剖学方法旨在学习捕获潜伏子空间变化不同因素的表示。常用方法涉及最小化潜伏子空间之间的相互信息,使得每个潜在的底层属性。但是,当属性相关时,这会失败。我们通过强制执行可用属性上的子空间之间的独立性来解决此问题,这允许我们仅删除不导致的依赖性,这些依赖性是由于训练数据中存在的相关结构。我们通过普发的方法实现这一目标,以最小化关于分类变量的子空间之间的条件互信息(CMI)。我们首先在理论上展示了CMI最小化是对高斯数据线性问题的稳健性解剖的良好目标。然后,我们基于MNIST和Celeba在现实世界数据集上应用我们的方法,并表明它会在相关偏移下产生脱屑和强大的模型,包括弱监督设置。
translated by 谷歌翻译
过度装备数据是与生成模型的众所周知的现象,其模拟太紧密(或准确)的特定数据实例,因此可能无法可靠地预测未来的观察。在实践中,这种行为是由各种 - 有时启发式的 - 正则化技术控制,这是通过将上限发展到泛化误差的激励。在这项工作中,我们研究依赖于在跨熵损失的随机编码上依赖于随机编码的泛化误差,这通常用于深度学习进行分类问题。我们导出界定误差,示出存在根据编码分布随机生成的输入特征和潜在空间中的相应表示之间的相互信息界定的制度。我们的界限提供了对所谓的各种变分类分类中的概括的信息理解,其由Kullback-Leibler(KL)发散项进行规则化。这些结果为变分推理方法提供了高度流行的KL术语的理论理由,这些方法已经认识到作为正则化罚款有效行动。我们进一步观察了具有良好研究概念的连接,例如变形自动化器,信息丢失,信息瓶颈和Boltzmann机器。最后,我们对Mnist和CiFar数据集进行了数值实验,并表明相互信息确实高度代表了泛化误差的行为。
translated by 谷歌翻译
尽管机器学习模型迅速推进了各种现实世界任务的最先进,但鉴于这些模型对虚假相关性的脆弱性,跨域(OOD)的概括仍然是一个挑战性的问题。尽管当前的域概括方法通常着重于通过新的损耗函数设计在不同域上实施某些不变性属性,但我们提出了一种平衡的迷你批次采样策略,以减少观察到的训练分布中域特异性的虚假相关性。更具体地说,我们提出了一种两步方法,该方法1)识别虚假相关性的来源,以及2)通过在确定的来源上匹配,构建平衡的迷你批次而没有虚假相关性。我们提供了伪造来源的可识别性保证,并表明我们提出的方法是从所有培训环境中平衡,无虚拟分布的样本。实验是在三个具有伪造相关性的计算机视觉数据集上进行的,从经验上证明,与随机的迷你批次采样策略相比,我们平衡的微型批次采样策略可改善四个不同建立的域泛化模型基线的性能。
translated by 谷歌翻译
分销(OOD)泛化问题的目标是培训推广所有环境的预测因子。此字段中的流行方法使用这样的假设,即这种预测器应为\ Texit {不变预测器},该{不变预测仪}捕获跨环境仍然不变的机制。虽然这些方法在各种案例研究中进行了实验成功,但仍然有很多关于这一假设的理论验证的空间。本文介绍了一系列不变预测因素所必需的一系列理论条件,以实现ood最优性。我们的理论不仅适用于非线性案例,还概括了\ CiteT {Rojas2018Invariant}中使用的必要条件。我们还从我们的理论中得出渐变对齐算法,并展示了\ Citet {Aubinlinear}提出的三个\ Texit {不变性单元测试}中的两种竞争力。
translated by 谷歌翻译
瓶颈问题是一系列重要的优化问题,最近在机器学习和信息理论领域引起了人们的关注。它们被广泛用于生成模型,公平的机器学习算法,对隐私保护机制的设计,并在各种多用户通信问题中作为信息理论性能界限出现。在这项工作中,我们提出了一个普通的优化问题家族,称为复杂性 - 裸露的瓶颈(俱乐部)模型,该模型(i)提供了一个统一的理论框架,该框架将大多数最先进的文献推广到信息理论隐私模型(ii)建立了对流行的生成和判别模型的新解释,(iii)构建了生成压缩模型的新见解,并且(iv)可以在公平的生成模型中使用。我们首先将俱乐部模型作为复杂性约束的隐私性优化问题。然后,我们将其与密切相关的瓶颈问题(即信息瓶颈(IB),隐私渠道(PF),确定性IB(DIB),条件熵瓶颈(CEB)和有条件的PF(CPF)连接。我们表明,俱乐部模型概括了所有这些问题以及大多数其他信息理论隐私模型。然后,我们通过使用神经网络来参数化相关信息数量的变异近似来构建深层俱乐部(DVCLUB)模型。在这些信息数量的基础上,我们提出了监督和无监督的DVClub模型的统一目标。然后,我们在无监督的设置中利用DVClub模型,然后将其与最先进的生成模型(例如变异自动编码器(VAE),生成对抗网络(GAN)以及Wasserstein Gan(WGAN)连接起来,Wasserstein自动编码器(WAE)和对抗性自动编码器(AAE)通过最佳运输(OT)问题模型。然后,我们证明DVCLUB模型也可以用于公平表示学习问题,其目标是在机器学习模型的训练阶段减轻不希望的偏差。我们对彩色命名和Celeba数据集进行了广泛的定量实验,并提供了公共实施,以评估和分析俱乐部模型。
translated by 谷歌翻译
机器学习系统经常在培训和测试之间遇到分发转变。在本文中,我们介绍了一个简单的变分目标,其OptiCa正好成为所有表现形式的集合,在那种情况下,保证风险最小化者对保留贝叶斯预测因子的任何分配换档,例如协变量。我们的目标有两个组成部分。首先,表示必须保持对任务的判别,即,一些预测指标必须能够同时最小化来源和目标风险。其次,代表性的边际支持需要跨源头和目标相同。我们通过设计自我监督的学习方法来实现这一实用,只使用未标记的数据和增强来培训强大的陈述。我们的目标在域底实现最先进的结果,并对最近的方法(如剪辑)的稳健性提供洞察力。
translated by 谷歌翻译
传统的监督学习方法,尤其是深的学习方法,发现对分发超出(OOD)示例敏感,主要是因为所学习的表示与由于其域特异性相关性的变异因子混合了语义因素,而只有语义因子导致输出。为了解决这个问题,我们提出了一种基于因果推理的因果语义生成模型(CSG),以便分别建模两个因素,以及从单个训练域中的oo ood预测的制定方法,这是常见和挑战的。该方法基于因果不变原理,在变形贝斯中具有新颖的设计,用于高效学习和易于预测。从理论上讲,我们证明,在某些条件下,CSG可以通过拟合训练数据来识别语义因素,并且这种语义识别保证了泛化概率的界限和适应的成功。实证研究表明,改善了卓越的基线表现。
translated by 谷歌翻译
提出了一种新的双峰生成模型,用于生成条件样品和关节样品,并采用学习简洁的瓶颈表示的训练方法。所提出的模型被称为变异Wyner模型,是基于网络信息理论中的两个经典问题(分布式仿真和信道综合)设计的,其中Wyner的共同信息是对公共表示简洁性的基本限制。该模型是通过最大程度地减少对称的kullback的训练 - 差异 - 变异分布和模型分布之间具有正则化项,用于常见信息,重建一致性和潜在空间匹配项,该术语是通过对逆密度比率估计技术进行的。通过与合成和现实世界数据集的联合和有条件生成的实验以及具有挑战性的零照片图像检索任务,证明了所提出的方法的实用性。
translated by 谷歌翻译
最近,提出了不变的风险最小化(IRM)作为解决分布外(OOD)概括的有前途的解决方案。但是,目前尚不清楚何时应优先于广泛的经验风险最小化(ERM)框架。在这项工作中,我们从样本复杂性的角度分析了这两个框架,从而迈出了一个坚定的一步,以回答这个重要问题。我们发现,根据数据生成机制的类型,这两种方法可能具有有限样本和渐近行为。例如,在协变量偏移设置中,我们看到两种方法不仅达到了相同的渐近解决方案,而且具有相似的有限样本行为,没有明显的赢家。但是,对于其他分布变化,例如涉及混杂因素或反毒物变量的变化,两种方法到达不同的渐近解决方案,在这些方法中,保证IRM可以接近有限样品状态中所需的OOD溶液,而ERM甚至偶然地偏向于渐近。我们进一步研究了不同因素(环境的数量,模型的复杂性和IRM惩罚权重)如何影响IRM的样本复杂性与其距离OOD溶液的距离有关
translated by 谷歌翻译
Distributional shift is one of the major obstacles when transferring machine learning prediction systems from the lab to the real world. To tackle this problem, we assume that variation across training domains is representative of the variation we might encounter at test time, but also that shifts at test time may be more extreme in magnitude. In particular, we show that reducing differences in risk across training domains can reduce a model's sensitivity to a wide range of extreme distributional shifts, including the challenging setting where the input contains both causal and anticausal elements. We motivate this approach, Risk Extrapolation (REx), as a form of robust optimization over a perturbation set of extrapolated domains (MM-REx), and propose a penalty on the variance of training risks (V-REx) as a simpler variant. We prove that variants of REx can recover the causal mechanisms of the targets, while also providing some robustness to changes in the input distribution ("covariate shift"). By tradingoff robustness to causally induced distributional shifts and covariate shift, REx is able to outperform alternative methods such as Invariant Risk Minimization in situations where these types of shift co-occur.
translated by 谷歌翻译
When presented with a data stream of two statistically dependent variables, predicting the future of one of the variables (the target stream) can benefit from information about both its history and the history of the other variable (the source stream). For example, fluctuations in temperature at a weather station can be predicted using both temperatures and barometric readings. However, a challenge when modelling such data is that it is easy for a neural network to rely on the greatest joint correlations within the target stream, which may ignore a crucial but small information transfer from the source to the target stream. As well, there are often situations where the target stream may have previously been modelled independently and it would be useful to use that model to inform a new joint model. Here, we develop an information bottleneck approach for conditional learning on two dependent streams of data. Our method, which we call Transfer Entropy Bottleneck (TEB), allows one to learn a model that bottlenecks the directed information transferred from the source variable to the target variable, while quantifying this information transfer within the model. As such, TEB provides a useful new information bottleneck approach for modelling two statistically dependent streams of data in order to make predictions about one of them.
translated by 谷歌翻译
适应数据分布的结构(例如对称性和转型Imarerces)是机器学习中的重要挑战。通过架构设计或通过增强数据集,可以内在学习过程中内置Inhormces。两者都需要先验的了解对称性的确切性质。缺乏这种知识,从业者求助于昂贵且耗时的调整。为了解决这个问题,我们提出了一种新的方法来学习增强变换的分布,以新的\ emph {转换风险最小化}(trm)框架。除了预测模型之外,我们还优化了从假说空间中选择的转换。作为算法框架,我们的TRM方法是(1)有效(共同学习增强和模型,以\ emph {单训练环}),(2)模块化(使用\ emph {任何训练算法),以及(3)一般(处理\ \ ich {离散和连续}增强)。理论上与标准风险最小化的TRM比较,并在其泛化误差上给出PAC-Bayes上限。我们建议通过块组成的新参数化优化富裕的增强空间,导致新的\ EMPH {随机成分增强学习}(SCALE)算法。我们在CIFAR10 / 100,SVHN上使用先前的方法(快速自身自动化和武术器)进行实际比较规模。此外,我们表明规模可以在数据分布中正确地学习某些对称性(恢复旋转Mnist上的旋转),并且还可以改善学习模型的校准。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
尽管大规模的经验风险最小化(ERM)在各种机器学习任务中取得了高精度,但公平的ERM受到公平限制与随机优化的不兼容的阻碍。我们考虑具有离散敏感属性以及可能需要随机求解器的可能性大型模型和数据集的公平分类问题。现有的内部处理公平算法在大规模设置中要么是不切实际的,因为它们需要在每次迭代时进行大量数据,要么不保证它们会收敛。在本文中,我们开发了第一个具有保证收敛性的随机内处理公平算法。对于人口统计学,均衡的赔率和公平的机会均等的概念,我们提供了算法的略有变化,称为Fermi,并证明这些变化中的每一个都以任何批次大小收敛于随机优化。从经验上讲,我们表明Fermi适合具有多个(非二进制)敏感属性和非二进制目标的随机求解器,即使Minibatch大小也很小,也可以很好地表现。广泛的实验表明,与最先进的基准相比,FERMI实现了所有经过测试的设置之间的公平违规和测试准确性之间最有利的权衡,该基准是人口统计学奇偶校验,均衡的赔率,均等机会,均等机会。这些好处在小批量的大小和非二元分类具有大量敏感属性的情况下尤其重要,这使得费米成为大规模问题的实用公平算法。
translated by 谷歌翻译
从视觉观察中了解动态系统的潜在因果因素被认为是对复杂环境中推理的推理的关键步骤。在本文中,我们提出了Citris,这是一种变异自动编码器框架,从图像的时间序列中学习因果表示,其中潜在的因果因素可能已被干预。与最近的文献相反,Citris利用了时间性和观察干预目标,以鉴定标量和多维因果因素,例如3D旋转角度。此外,通过引入归一化流,可以轻松扩展柑橘,以利用和删除已验证的自动编码器获得的删除表示形式。在标量因果因素上扩展了先前的结果,我们在更一般的环境中证明了可识别性,其中仅因果因素的某些成分受干预措施影响。在对3D渲染图像序列的实验中,柑橘类似于恢复基本因果变量的先前方法。此外,使用预验证的自动编码器,Citris甚至可以概括为因果因素的实例化,从而在SIM到现实的概括中开放了未来的研究领域,以进行因果关系学习。
translated by 谷歌翻译
尽管自我监督学习(SSL)方法取得了经验成功,但尚不清楚其表示的哪些特征导致了高下游精度。在这项工作中,我们表征了SSL表示应该满足的属性。具体而言,我们证明了必要和充分的条件,因此,对于给出的数据增强的任何任务,在该表示形式上训练的所需探针(例如,线性或MLP)具有完美的准确性。这些要求导致一个统一的概念框架,用于改善现有的SSL方法并得出新方法。对于对比度学习,我们的框架规定了对以前的方法(例如使用不对称投影头)的简单但重大改进。对于非对比度学习,我们使用框架来得出一个简单新颖的目标。我们所得的SSL算法在标准基准测试上的表现优于基线,包括Imagenet线性探测的SHAV+多螺旋桨。
translated by 谷歌翻译
Learning models that gracefully handle distribution shifts is central to research on domain generalization, robust optimization, and fairness. A promising formulation is domain-invariant learning, which identifies the key issue of learning which features are domain-specific versus domaininvariant. An important assumption in this area is that the training examples are partitioned into "domains" or "environments". Our focus is on the more common setting where such partitions are not provided. We propose EIIL, a general framework for domain-invariant learning that incorporates Environment Inference to directly infer partitions that are maximally informative for downstream Invariant Learning. We show that EIIL outperforms invariant learning methods on the CMNIST benchmark without using environment labels, and significantly outperforms ERM on worst-group performance in the Waterbirds and CivilComments datasets. Finally, we establish connections between EIIL and algorithmic fairness, which enables EIIL to improve accuracy and calibration in a fair prediction problem.
translated by 谷歌翻译
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
translated by 谷歌翻译
The key idea behind the unsupervised learning of disentangled representations is that real-world data is generated by a few explanatory factors of variation which can be recovered by unsupervised learning algorithms. In this paper, we provide a sober look at recent progress in the field and challenge some common assumptions. We first theoretically show that the unsupervised learning of disentangled representations is fundamentally impossible without inductive biases on both the models and the data. Then, we train more than 12 000 models covering most prominent methods and evaluation metrics in a reproducible large-scale experimental study on seven different data sets. We observe that while the different methods successfully enforce properties "encouraged" by the corresponding losses, well-disentangled models seemingly cannot be identified without supervision. Furthermore, increased disentanglement does not seem to lead to a decreased sample complexity of learning for downstream tasks. Our results suggest that future work on disentanglement learning should be explicit about the role of inductive biases and (implicit) supervision, investigate concrete benefits of enforcing disentanglement of the learned representations, and consider a reproducible experimental setup covering several data sets.
translated by 谷歌翻译