在安全关键系统的背景下将模拟缩小到现实差距的动机,我们考虑学习用于未知非线性动力系统的前列鲁棒稳定性证书。符合鲁棒控制的方法,我们考虑添加系统动态的添加剂和Lipschitz有界对手。我们表明,在基础系统上的增量稳定性的合适假设下,学习对抗稳定证明的统计成本相当于持续因素,以学习名义稳定证明。我们的结果铰接在新的导火颤机复杂性的新型界限,这可能是独立的兴趣。据我们所知,这是在对动态系统生成的数据进行对抗性学习时,对样本复杂性限制的第一次表征。我们还提供一种用于近似对抗训练算法的实用算法,并在阻尼摆锤示例上验证我们的发现。
translated by 谷歌翻译
非线性自适应控制理论中的一个关键假设是系统的不确定性可以在一组已知基本函数的线性跨度中表示。虽然该假设导致有效的算法,但它将应用限制为非常特定的系统类别。我们介绍一种新的非参数自适应算法,其在参数上学习无限尺寸密度,以取消再现内核希尔伯特空间中的未知干扰。令人惊讶的是,所产生的控制输入承认,尽管其底层无限尺寸结构,但是尽管它的潜在无限尺寸结构实现了其实施的分析表达。虽然这种自适应输入具有丰富和富有敏感性的 - 例如,传统的线性参数化 - 其计算复杂性随时间线性增长,使其比其参数对应力相对较高。利用随机傅里叶特征的理论,我们提供了一种有效的随机实现,该实现恢复了经典参数方法的复杂性,同时可透明地保留非参数输入的表征性。特别地,我们的显式范围仅取决于系统的基础参数,允许我们所提出的算法有效地缩放到高维系统。作为该方法的说明,我们展示了随机近似算法学习由牛顿重力交互的十点批量组成的60维系统的预测模型的能力。
translated by 谷歌翻译
收缩理论是一种分析工具,用于研究以均匀的正面矩阵定义的收缩度量下的非自主(即,时变)非线性系统的差动动力学,其存在导致增量指数的必要和充分表征多种溶液轨迹彼此相互稳定性的稳定性。通过使用平方差分长度作为Lyapunov样功能,其非线性稳定性分析向下沸腾以找到满足以表达为线性矩阵不等式的稳定条件的合适的收缩度量,表明可以在众所周知的线性系统之间绘制许多平行线非线性系统理论与收缩理论。此外,收缩理论利用了与比较引理结合使用的指数稳定性的优越稳健性。这产生了基于神经网络的控制和估计方案的急需安全性和稳定性保证,而不借助使用均匀渐近稳定性的更涉及的输入到状态稳定性方法。这种独特的特征允许通过凸优化来系统构造收缩度量,从而获得了由于扰动和学习误差而在外部扰动的时变的目标轨迹和解决方案轨迹之间的距离上的明确指数界限。因此,本文的目的是介绍了收缩理论的课程概述及其在确定性和随机系统的非线性稳定性分析中的优点,重点导出了各种基于学习和数据驱动的自动控制方法的正式鲁棒性和稳定性保证。特别是,我们提供了使用深神经网络寻找收缩指标和相关控制和估计法的技术的详细审查。
translated by 谷歌翻译
本文提出了一种基于匹配不确定性的非线性系统的收缩指标和干扰估计的轨迹中心学习控制方法。该方法允许使用广泛的模型学习工具,包括深神经网络,以学习不确定的动态,同时仍然在整个学习阶段提供瞬态跟踪性能的保证,包括没有学习的特殊情况。在所提出的方法中,提出了一种扰动估计法,以估计不确定性的点值,具有预计估计误差限制(EEB)。学习的动态,估计的紊乱和EEB在强大的黎曼能量条件下并入,以计算控制法,即使学习模型较差,也能保证在整个学习阶段的所需轨迹对所需轨迹的指数趋同。另一方面,具有改进的精度,学习的模型可以在高级计划器中结合,以规划更好的性能,例如降低能耗和更短的旅行时间。建议的框架在平面Quadrotor导航示例上验证。
translated by 谷歌翻译
我们为研究通过将噪声注入隐藏状态而训练的经常性神经网络(RNN)提供了一般框架。具体地,我们考虑RNN,其可以被视为由输入数据驱动的随机微分方程的离散化。该框架允许我们通过在小噪声制度中导出近似显式规范器来研究一般噪声注入方案的隐式正则化效果。我们发现,在合理的假设下,这种隐含的正规化促进了更平坦的最小值;它偏向具有更稳定动态的模型;并且,在分类任务中,它有利于具有较大分类余量的模型。获得了全局稳定性的充分条件,突出了随机稳定的现象,其中噪音注入可以在训练期间提高稳定性。我们的理论得到了经验结果支持,证明RNN对各种输入扰动具有改善的鲁棒性。
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
学习如何随着时间的推移发展复杂的动态系统是系统识别中的关键挑战。对于安全关键系统,它通常是至关重要的,因为学习的模型保证会聚到一些均衡点。为此,当完全观察到各种时,用神经拉布诺夫函数规范的神经杂物是一种有希望的方法。然而,对于实际应用,部分观察是常态。正如我们将证明,未观察到的增强状态的初始化可能成为神经杂物余下的关键问题。为了减轻这个问题,我们建议增加该系统的历史历史。通过国家增强在离散时间系统中的启发,我们得到了神经延迟微分方程。基于古典时间延迟稳定性分析,我们展示了如何确保学习模型的稳定性,从理论上分析我们的方法。我们的实验表明其适用于稳定的系统识别部分观察到的系统和学习延迟反馈控制中的稳定反馈策略。
translated by 谷歌翻译
强化学习通常与奖励最大化(或成本量化)代理的培训相关,换句话说是控制者。它可以使用先验或在线收集的系统数据以无模型或基于模型的方式应用,以培训涉及的参数体系结构。通常,除非通过学习限制或量身定制的培训规则采取特殊措施,否则在线增强学习不能保证闭环稳定性。特别有希望的是通过“经典”控制方法进行增强学习的混合体。在这项工作中,我们建议一种在纯粹的在线学习环境中,即没有离线培训的情况下,可以保证系统控制器闭环的实际稳定性。此外,我们仅假设对系统模型的部分知识。为了达到要求的结果,我们采用经典自适应控制技术。总体控制方案的实施是在数字,采样设置中明确提供的。也就是说,控制器接收系统的状态,并在离散的时间(尤其是等距的时刻)中计算控制动作。该方法在自适应牵引力控制和巡航控制中进行了测试,事实证明,该方法可显着降低成本。
translated by 谷歌翻译
加速梯度方法是大规模,数据驱动优化问题的基石,其在机器学习和其他关于数据分析的其他领域出现的自然。我们介绍了一种基于梯度的优化框架,用于实现加速度,基于最近引入了动态系统的固定时间稳定性的概念。该方法本身表示作为基于简单的基于梯度的方法的概括,适当地缩放以在固定时间内实现对优化器的收敛,与初始化无关。我们通过首先利用用于设计定时稳定动态系统的连续时间框架来实现这一目标,并且稍后提供一致的离散化策略,使得等效的离散时间算法在实际固定数量的迭代中跟踪优化器。我们还提供了对所提出的梯度流动的收敛行为的理论分析,以及他们对遵循强大凸起,严格凸起,并且可能不承受的功能的一系列功能的鲁造性,但满足Polyak - {\ l} Ojasiewicz不平等。我们还表明,由于定时收敛,收敛率的遗憾是恒定的。普遍的参数具有直观的解释,可以调整以适应所需的收敛速率的要求。我们验证了针对最先进的优化算法的一系列数值示例上提出的方案的加速收敛性。我们的工作提供了通过连续时间流动的离散化开发新颖优化算法的见解。
translated by 谷歌翻译
We study representation learning for efficient imitation learning over linear systems. In particular, we consider a setting where learning is split into two phases: (a) a pre-training step where a shared $k$-dimensional representation is learned from $H$ source policies, and (b) a target policy fine-tuning step where the learned representation is used to parameterize the policy class. We find that the imitation gap over trajectories generated by the learned target policy is bounded by $\tilde{O}\left( \frac{k n_x}{HN_{\mathrm{shared}}} + \frac{k n_u}{N_{\mathrm{target}}}\right)$, where $n_x > k$ is the state dimension, $n_u$ is the input dimension, $N_{\mathrm{shared}}$ denotes the total amount of data collected for each policy during representation learning, and $N_{\mathrm{target}}$ is the amount of target task data. This result formalizes the intuition that aggregating data across related tasks to learn a representation can significantly improve the sample efficiency of learning a target task. The trends suggested by this bound are corroborated in simulation.
translated by 谷歌翻译
在一个拟合训练数据的深度神经网络(NN)中找到参数是一个非渗透优化问题,但基本的一阶优化方法(梯度下降)在许多实际情况下,具有完美拟合(零损失)的全局优化器。我们在限制性制度中检查残留神经网络(Reset)的剩余神经网络(Reset)的情况的这种现象,其中每个层(宽度)的层数(深度)和权重的数量均转到无穷大。首先,我们使用平均场限制参数来证明参数训练的梯度下降成为概率分布的梯度流,其特征在于大NN限制中的部分微分方程(PDE)。接下来,我们表明,在某些假设下,PDE的解决方案在训练时间内收敛到零损失解决方案。这些结果表明,如果Reset足够大,则reset的培训给出了近零损失。我们给出了减少给定阈值以下低于给定阈值的损失所需的深度和宽度的估计值。
translated by 谷歌翻译
Despite its popularity in the reinforcement learning community, a provably convergent policy gradient method for continuous space-time control problems with nonlinear state dynamics has been elusive. This paper proposes proximal gradient algorithms for feedback controls of finite-time horizon stochastic control problems. The state dynamics are nonlinear diffusions with control-affine drift, and the cost functions are nonconvex in the state and nonsmooth in the control. The system noise can degenerate, which allows for deterministic control problems as special cases. We prove under suitable conditions that the algorithm converges linearly to a stationary point of the control problem, and is stable with respect to policy updates by approximate gradient steps. The convergence result justifies the recent reinforcement learning heuristics that adding entropy regularization or a fictitious discount factor to the optimization objective accelerates the convergence of policy gradient methods. The proof exploits careful regularity estimates of backward stochastic differential equations.
translated by 谷歌翻译
直接政策搜索作为现代强化学习(RL)的工作人员之一,其在连续控制任务中的应用最近引起了不断的关注。在这项工作中,我们研究了用于学习线性风险敏感和鲁棒控制器的政策梯度(PG)方法的收敛理论。特别地,我们开发PG方法,可以通过采样系统轨迹以无衍生方式实现,并建立全球收敛性和样本复杂性,这导致风险敏感和强大控制中的两个基本环境的解决方案:有限地平线线性指数二次高斯,以及有限地平线线性二次干扰衰减问题。作为副产品,我们的结果还为解决零和线性二次动态游戏的PG方法的全局融合提供了第一种样本复杂性,这是一种非透明的极限优化问题,该问题用作多功能钢筋中的基线设置学习(Marl)与连续空间。我们的算法的一个特征是在学习阶段,保留了一定程度的控制器的鲁棒性/风险敏感性,因此我们被称为隐式正则化属性,并且是安全关键控制系统的基本要求。
translated by 谷歌翻译
本文开发了一种基于模型的强化学习(MBR)框架,用于在线在线学习无限范围最佳控制问题的价值函数,同时遵循表示为控制屏障功能(CBFS)的安全约束。我们的方法是通过开发一种新型的CBFS,称为Lyapunov样CBF(LCBF),其保留CBFS的有益特性,以开发最微创的安全控制政策,同时也具有阳性半自动等所需的Lyapunov样品质 - 义法。我们展示这些LCBFS如何用于增强基于学习的控制策略,以保证安全性,然后利用这种方法在MBRL设置中开发安全探索框架。我们表明,我们的开发方法可以通过各种数值示例来处理比较法的更通用的安全限制。
translated by 谷歌翻译
找到Reset中的参数的最佳配置是一个非凸显最小化问题,但一阶方法尽管如此,找到了过度分辨率制度的全局最优。通过将Reset的训练过程转化为梯度流部分微分方程(PDE)和检查该限制过程的收敛性能,我们研究了这种现象。假设激活函数为2美元 - 最佳或部分$ 1 $-homerence;正则Relu满足后一种条件。我们表明,如果Reset足够大,则深度和宽度根据代数上的准确性和置信水平,一阶优化方法可以找到适合培训数据的全局最小化器。
translated by 谷歌翻译
我们研究了随机近似程序,以便基于观察来自ergodic Markov链的长度$ n $的轨迹来求近求解$ d -dimension的线性固定点方程。我们首先表现出$ t _ {\ mathrm {mix}} \ tfrac {n}} \ tfrac {n}} \ tfrac {d}} \ tfrac {d} {n} $的非渐近性界限。$ t _ {\ mathrm {mix $是混合时间。然后,我们证明了一种在适当平均迭代序列上的非渐近实例依赖性,具有匹配局部渐近最小的限制的领先术语,包括对参数$的敏锐依赖(d,t _ {\ mathrm {mix}}) $以高阶术语。我们将这些上限与非渐近Minimax的下限补充,该下限是建立平均SA估计器的实例 - 最优性。我们通过Markov噪声的政策评估导出了这些结果的推导 - 覆盖了所有$ \ lambda \中的TD($ \ lambda $)算法,以便[0,1)$ - 和线性自回归模型。我们的实例依赖性表征为HyperParameter调整的细粒度模型选择程序的设计开放了门(例如,在运行TD($ \ Lambda $)算法时选择$ \ lambda $的值)。
translated by 谷歌翻译
在最近的文献中,学习方法与模型预测控制(MPC)的结合吸引了大量关注。这种组合的希望是减少MPC方案对准确模型的依赖,并利用快速开发的机器学习和强化学习工具,以利用许多系统可用的数据量。特别是,增强学习和MPC的结合已被认为是一种可行且理论上合理的方法,以引入可解释的,安全和稳定的政策,以实现强化学习。但是,一种正式的理论详细介绍了如何通过学习工具提供的参数更新来维持基于MPC的策略的安全性和稳定性。本文解决了这一差距。该理论是针对通用的强大MPC案例开发的,并在基于强大的管线MPC情况的模拟中应用,在该情况下,该理论在实践中很容易部署。本文着重于增强学习作为学习工具,但它适用于任何在线更新MPC参数的学习方法。
translated by 谷歌翻译
我们考虑在离散时间非线性随机控制系统中正式验证几乎核实(A.S.)渐近稳定性的问题。在文献中广泛研究确定性控制系统中的验证稳定性,验证随机控制系统中的验证稳定性是一个开放的问题。本主题的少数现有的作品只考虑专门的瞬间形式,或对系统进行限制性假设,使其无法与神经网络策略的学习算法不适用。在这项工作中,我们提出了一种具有两种新颖方面的一般非线性随机控制问题的方法:(a)Lyapunov函数的经典随机扩展,我们使用排名超大地区(RSMS)来证明〜渐近稳定性,以及(B)我们提出一种学习神经网络RSM的方法。我们证明我们的方法保证了系统的渐近稳定性,并提供了第一种方法来获得稳定时间的界限,其中随机Lyapunov功能不。最后,我们在通过神经网络政策的一套非线性随机强化学习环境上通过实验验证我们的方法。
translated by 谷歌翻译
深度神经网络和其他现代机器学习模型的培训通常包括解决高维且受大规模数据约束的非凸优化问题。在这里,基于动量的随机优化算法在近年来变得尤其流行。随机性来自数据亚采样,从而降低了计算成本。此外,动量和随机性都应该有助于算法克服当地的最小化器,并希望在全球范围内融合。从理论上讲,这种随机性和动量的结合被糟糕地理解。在这项工作中,我们建议并分析具有动量的随机梯度下降的连续时间模型。该模型是一个分段确定的马尔可夫过程,它通过阻尼不足的动态系统和通过动力学系统的随机切换来代表粒子运动。在我们的分析中,我们研究了长期限制,子采样到无填充采样极限以及动量到非摩托车的限制。我们对随着时间的推移降低动量的情况特别感兴趣:直觉上,动量有助于在算法的初始阶段克服局部最小值,但禁止后来快速收敛到全球最小化器。在凸度的假设下,当降低随时间的动量时,我们显示了动力学系统与全局最小化器的收敛性,并让子采样率转移到无穷大。然后,我们提出了一个稳定的,合成的离散方案,以从我们的连续时间动力学系统中构造算法。在数值实验中,我们研究了我们在凸面和非凸测试问题中的离散方案。此外,我们训练卷积神经网络解决CIFAR-10图像分类问题。在这里,与动量相比,我们的算法与随机梯度下降相比达到了竞争性结果。
translated by 谷歌翻译
稳定性认证并确定安全稳定的初始集是确保动态系统的操作安全性,稳定性和鲁棒性的两个重要问题。随着机器学习工具的出现,需要针对反馈循环中具有机器学习组件的系统来解决这些问题。为了开发一种关于神经网络(NN)控制的非线性系统的稳定性和稳定性的一般理论,提出了基于Lyapunov的稳定性证书,并进一步用于设计用于NN Controller和NN控制器和最大LIPSCHITZ绑定的。也是给定的安全操作域内内部相应的最大诱因(ROA)。为了计算这种强大的稳定NN控制器,它也最大化了系统的长期实用程序,提出了稳定性保证训练(SGT)算法。提出的框架的有效性通过说明性示例得到了验证。
translated by 谷歌翻译