We study experiment design for unique identification of the causal graph of a system where the graph may contain cycles. The presence of cycles in the structure introduces major challenges for experiment design as, unlike acyclic graphs, learning the skeleton of causal graphs with cycles may not be possible from merely the observational distribution. Furthermore, intervening on a variable in such graphs does not necessarily lead to orienting all the edges incident to it. In this paper, we propose an experiment design approach that can learn both cyclic and acyclic graphs and hence, unifies the task of experiment design for both types of graphs. We provide a lower bound on the number of experiments required to guarantee the unique identification of the causal graph in the worst case, showing that the proposed approach is order-optimal in terms of the number of experiments up to an additive logarithmic term. Moreover, we extend our result to the setting where the size of each experiment is bounded by a constant. For this case, we show that our approach is optimal in terms of the size of the largest experiment required for uniquely identifying the causal graph in the worst case.
translated by 谷歌翻译
我们研究在有关系统的结构侧信息时学习一组变量的贝叶斯网络(BN)的问题。众所周知,学习一般BN的结构在计算上和统计上具有挑战性。然而,通常在许多应用中,关于底层结构的侧面信息可能会降低学习复杂性。在本文中,我们开发了一种基于递归约束的算法,其有效地将这些知识(即侧信息)纳入学习过程。特别地,我们研究了关于底层BN的两种类型的结构侧信息:(i)其集团数的上限是已知的,或者(ii)它是无菱形的。我们为学习算法提供理论保证,包括每个场景所需的最坏情况的测试数量。由于我们的工作,我们表明可以通过多项式复杂性学习有界树木宽度BNS。此外,我们评估了综合性和现实世界结构的算法的性能和可扩展性,并表明它们优于最先进的结构学习算法。
translated by 谷歌翻译
我们建议在没有观察到的变量的情况下,提出基于订购的方法,用于学习结构方程模型(SEM)的最大祖先图(MAG),直到其Markov等效类(MEC)。文献中的现有基于订购的方法通过学习因果顺序(C-order)恢复图。我们提倡一个名为“可移动顺序”(R-rorder)的新颖订单,因为它们比结构学习的C端口有利。这是因为R-orders是适当定义的优化问题的最小化器,该问题可以准确解决(使用强化学习方法)或大约(使用爬山搜索)。此外,R-orders(与C-orders不同)在MEC中的所有图表中都是不变的,并将C-orders包括为子集。鉴于一组R-orders通常明显大于C-orders集,因此优化问题更容易找到R级而不是C级。我们评估了在现实世界和随机生成的网络上提出的方法的性能和可伸缩性。
translated by 谷歌翻译
Pearl's Do Colculus是一种完整的公理方法,可以从观察数据中学习可识别的因果效应。如果无法识别这种效果,则有必要在系统中执行经常昂贵的干预措施以学习因果效应。在这项工作中,我们考虑了设计干预措施以最低成本来确定所需效果的问题。首先,我们证明了这个问题是NP-HARD,随后提出了一种可以找到最佳解或对数因子近似值的算法。这是通过在我们的问题和最小击球设置问题之间建立联系来完成的。此外,我们提出了几种多项式启发式算法来解决问题的计算复杂性。尽管这些算法可能会偶然发现亚最佳解决方案,但我们的模拟表明它们在随机图上产生了小的遗憾。
translated by 谷歌翻译
在观察性研究中,经常遇到有关存在或缺乏因果边缘和路径的因果背景知识。由于背景知识而导致的马尔可夫等效dag的子类共享的指向边缘和链接可以由因果关系最大部分定向的无循环图(MPDAG)表示。在本文中,我们首先提供了因果MPDAG的声音和完整的图形表征,并提供了因果MPDAG的最小表示。然后,我们介绍了一种名为Direct Causal子句(DCC)的新颖表示,以统一形式表示所有类型的因果背景知识。使用DCC,我们研究因果背景知识的一致性和等效性,并表明任何因果背景知识集都可以等效地分解为因果MPDAG,以及最小的残留DCC。还提供了多项式时间算法,以检查一致性,等效性并找到分解的MPDAG和残留DCC。最后,有了因果背景知识,我们证明了一个足够且必要的条件来识别因果关系,并且出人意料地发现因果效应的可识别性仅取决于分解的MPDAG。我们还开发了局部IDA型算法,以估计无法识别效应的可能值。模拟表明因果背景知识可以显着提高因果影响的识别性。
translated by 谷歌翻译
在原因指导的非循环图(DAG)的结构学习问题中出现的良好研究挑战是,使用观测数据,一个人只能将图形到“马尔可夫等价类”(MEC)。剩余的无向边缘必须使用干预率定向,这可以在应用中执行昂贵。因此,最小化了全面定向MEC所需的干预次数的问题已经得到了很多最近的关注,并且也是这项工作的重点。我们证明了两个主要结果。第一个是一种新的通用下限,在任何算法(无论是主动或被动)需要执行的原子干预次数,以便定向给定的MEC。我们的第二个结果表明,这一界限实际上是可以定位MEC的最小原子干预措施的两个大小的因素。我们的下限比以前已知的下限更好。我们的下限证明是基于CBSP订购的新概念,这是没有V-Surructure的DAG的拓扑排序,并满足某些特殊属性。此外,在综合图上使用模拟,并通过赋予特殊图家庭的示例,我们表明我们的界限往往明显更好。
translated by 谷歌翻译
常用图是表示和可视化因果关系的。对于少量变量,这种方法提供了简洁和清晰的方案的视图。随着下属的变量数量增加,图形方法可能变得不切实际,并且表示的清晰度丢失。变量的聚类是减少因果图大小的自然方式,但如果任意实施,可能会错误地改变因果关系的基本属性。我们定义了一种特定类型的群集,称为Transit Cluster,保证在某些条件下保留因果效应的可识别性属性。我们提供了一种用于在给定图中查找所有传输群集的声音和完整的算法,并演示集群如何简化因果效应的识别。我们还研究了逆问题,其中一个人以群集的图形开始,寻找扩展图,其中因果效应的可识别性属性保持不变。我们表明这种结构稳健性与过境集群密切相关。
translated by 谷歌翻译
也称为(非参数)结构方程模型(SEMS)的结构因果模型(SCM)被广泛用于因果建模目的。特别是,也称为递归SEM的无循环SCMS,形成了一个研究的SCM的良好的子类,概括了因果贝叶斯网络来允许潜在混淆。在本文中,我们调查了更多普通环境中的SCM,允许存在潜在混杂器和周期。我们展示在存在周期中,无循环SCM的许多方便的性质通常不会持有:它们并不总是有解决方案;它们并不总是诱导独特的观察,介入和反事实分布;边缘化并不总是存在,如果存在边缘模型并不总是尊重潜在的投影;他们并不总是满足马尔可夫财产;他们的图表并不总是与他们的因果语义一致。我们证明,对于SCM一般,这些属性中的每一个都在某些可加工条件下保持。我们的工作概括了SCM的结果,迄今为止仅针对某些特殊情况所知的周期。我们介绍了将循环循环设置扩展到循环设置的简单SCM的类,同时保留了许多方便的无环SCM的性能。用本文,我们的目标是为SCM提供统计因果建模的一般理论的基础。
translated by 谷歌翻译
我们考虑代表代理模型的问题,该模型使用我们称之为CSTREES的阶段树模型的适当子类对离散数据编码离散数据的原因模型。我们表明,可以通过集合表达CSTREE编码的上下文专用信息。由于并非所有阶段树模型都承认此属性,CSTREES是一个子类,可提供特定于上下文的因果信息的透明,直观和紧凑的表示。我们证明了CSTREEES承认全球性马尔可夫属性,它产生了模型等价的图形标准,概括了Verma和珍珠的DAG模型。这些结果延伸到一般介入模型设置,使CSTREES第一族的上下文专用模型允许介入模型等价的特征。我们还为CSTREE的最大似然估计器提供了一种封闭式公式,并使用它来表示贝叶斯信息标准是该模型类的本地一致的分数函数。在模拟和实际数据上分析了CSTHEELE的性能,在那里我们看到与CSTREELE而不是一般上演树的建模不会导致预测精度的显着损失,同时提供了特定于上下文的因果信息的DAG表示。
translated by 谷歌翻译
我们研究了与从介入数据中恢复因果图有关的两个问题:(i)$ \ textIt {verification} $,其中的任务是检查声称的因果图是否正确,并且(ii)$ \ textit {search} $,任务是恢复正确的因果图。对于这两者,我们都希望最大程度地减少执行的干预措施的数量。对于第一个问题,我们给出了一组最小尺寸的原子干预措施的表征,这些干预措施是必要且足以检查所要求的因果图的正确性。我们的表征使用$ \ textit {coving edges} $的概念,这使我们能够获得简单的证据,并且很容易理解早期结果。我们还将结果推广到有限尺寸干预措施和节点依赖性干预成本的设置。对于上述所有设置,我们提供了第一种已知的可验证算法,用于有效地计算(接近)一般图上的最佳验证集。对于第二个问题,我们给出了一种基于图形分离器的简单自适应算法,该算法会产生一个原子干预集,该集合在使用$ \ MATHCAL {O}(\ log n)$ times $ times所需的$所需干预措施时,该算法完全围绕任何必需图表。 \ textIt {verify} $(验证大小)$ n $顶点上的基础dag。相对于验证大小而言,此近似值是紧密的,因为$ \ textit {any} $搜索算法的最差情况是$ \ omega(\ log n)$的最差情况。使用有限的大小干预措施,每个大小$ \ leq k $,我们的算法给出了$ \ mathcal {o}(\ log n \ cdot \ log \ log \ log k)$ factor actialation。我们的结果是第一种已知的算法,该算法对一般未加权图和有界尺寸干预的验证尺寸提供了非平凡的近似保证。
translated by 谷歌翻译
In this review, we discuss approaches for learning causal structure from data, also called causal discovery. In particular, we focus on approaches for learning directed acyclic graphs (DAGs) and various generalizations which allow for some variables to be unobserved in the available data. We devote special attention to two fundamental combinatorial aspects of causal structure learning. First, we discuss the structure of the search space over causal graphs. Second, we discuss the structure of equivalence classes over causal graphs, i.e., sets of graphs which represent what can be learned from observational data alone, and how these equivalence classes can be refined by adding interventional data.
translated by 谷歌翻译
我们研究了在存在潜在变量存在下从数据重建因果图形模型的问题。感兴趣的主要问题是在潜在变量上恢复因果结构,同时允许一般,可能在变量之间的非线性依赖性。在许多实际问题中,原始观测之间的依赖性(例如,图像中的像素)的依赖性比某些高级潜在特征(例如概念或对象)之间的依赖性要小得多,这是感兴趣的设置。我们提供潜在表示和潜在潜在因果模型的条件可通过减少到混合甲骨文来识别。这些结果突出了学习混合模型的顺序的良好研究问题与观察到和解开的基础结构的问题之间的富裕问题之间的有趣连接。证明是建设性的,并导致几种算法用于明确重建全图形模型。我们讨论高效算法并提供说明实践中算法的实验。
translated by 谷歌翻译
本文考虑了从观察和介入数据估算因果导向的非循环图中未知干预目标的问题。重点是线性结构方程模型(SEM)中的软干预。目前对因果结构的方法学习使用已知的干预目标或使用假设测试来发现即使是线性SEM也可以发现未知的干预目标。这严重限制了它们的可扩展性和样本复杂性。本文提出了一种可扩展和高效的算法,始终识别所有干预目标。关键思想是从与观察和介入数据集相关联的精度矩阵之间的差异来估计干预站点。它涉及反复估计不同亚空间子集中的这些站点。该算法的算法还可用于将给定的观察马尔可夫等效类更新为介入马尔可夫等价类。在分析地建立一致性,马尔可夫等效和采样复杂性。最后,实际和合成数据的仿真结果展示了所提出的可扩展因果结构恢复方法的增益。算法的实现和重现仿真结果的代码可用于\ url {https://github.com/bvarici/intervention- istimation}。
translated by 谷歌翻译
In this paper we prove the so-called "Meek Conjecture". In particular, we show that if a DAG H is an independence map of another DAG G, then there exists a finite sequence of edge additions and covered edge reversals in G such that (1) after each edge modification H remains an independence map of G and ( 2) after all modifications G = H. As shown by Meek (1997), this result has an important consequence for Bayesian approaches to learning Bayesian networks from data: in the limit of large sample size, there exists a twophase greedy search algorithm that-when applied to a particular sparsely-connected search space-provably identifies a perfect map of the generative distribution if that perfect map is a DAG. We provide a new implementation of the search space, using equivalence classes as states, for which all operators used in the greedy search can be scored efficiently using local functions of the nodes in the domain. Finally, using both synthetic and real-world datasets, we demonstrate that the two-phase greedy approach leads to good solutions when learning with finite sample sizes.
translated by 谷歌翻译
因果结构学习是许多领域的关键问题。通过对感兴趣系统进行实验来学习因果结构。我们解决了设计一批实验的主要原因,每个实验中同时干预多个变量。虽然可能比常用的单变干预措施更具信息丰富,但选择这种干预措施是更具挑战性的,这是由于复合干预措施的双指数组合搜索空间。在本文中,我们开发有效的算法,以优化量化预算限制批次实验的信息性的不同目标函数。通过建立这些目标的新型子模具性质,我们为我们的算法提供近似保证。我们的算法经验上优于随机干预和算法,只能选择单变化干预。
translated by 谷歌翻译
我们分析了在没有特定分布假设的常规设置中从观察数据的学习中学循环图形模型的复杂性。我们的方法是信息定理,并使用本地马尔可夫边界搜索程序,以便在基础图形模型中递归地构建祖先集。也许令人惊讶的是,我们表明,对于某些图形集合,一个简单的前向贪婪搜索算法(即没有向后修剪阶段)足以学习每个节点的马尔可夫边界。这显着提高了我们在节点的数量中显示的样本复杂性。然后应用这一点以在从文献中概括存在现有条件的新型标识性条件下学习整个图。作为独立利益的问题,我们建立了有限样本的保障,以解决从数据中恢复马尔可夫边界的问题。此外,我们将我们的结果应用于特殊情况的Polytrees,其中假设简化,并提供了多项识别的明确条件,并且在多项式时间中可以识别和可知。我们进一步说明了算法在仿真研究中易于实现的算法的性能。我们的方法是普遍的,用于无需分布假设的离散或连续分布,并且由于这种棚灯对有效地学习来自数据的定向图形模型结构所需的最小假设。
translated by 谷歌翻译
人们对利用置换推理来搜索定向的无环因果模型的方法越来越兴趣,包括Teysier和Kohler和Solus,Wang和Uhler的GSP的“订购搜索”。我们通过基于置换的操作Tuck扩展了后者的方法,并开发了一类算法,即掌握,这些算法在越来越弱的假设下比忠诚度更有效且方向保持一致。最放松的掌握形式优于模拟中许多最新的因果搜索算法,即使对于具有超过100个变量的密集图和图形,也可以有效,准确地搜索。
translated by 谷歌翻译
在因果强盗问题中,动作集包括关于因果图的变量的干预。最近几位研究人员研究了这种强盗问题并指出了他们的实际应用。然而,所有现有的作品都依赖于限制性和不切实际的假设,即学习者将全面了解因果图结构前期。在本文中,我们在不知道因果图的情况下开发新的因果强盗算法。我们的算法适用于因果树,因果林和一般的因果图。我们的算法的遗憾保证大大提高了温和条件下标准多臂强盗(MAB)算法的遗传。最后,我们证明了我们的温和条件是必要的:如果没有它们,不能比标准MAB算法更好。
translated by 谷歌翻译
在图形因果发现的背景下,我们适应了线性非高斯无环模型(Lingams)的多功能框架,以提出新算法以有效地学习polytrees的图形。我们的方法结合了Chow- Liu算法,该算法首先学习了无向树结构,并与新的方案定向边缘。方向方案评估数据生成分布的矩之间的代数关系,并且计算便宜。我们为我们的方法建立了高维的一致性结果,并比较了数值实验中的不同算法版本。
translated by 谷歌翻译
Linear structural causal models (SCMs)-- in which each observed variable is generated by a subset of the other observed variables as well as a subset of the exogenous sources-- are pervasive in causal inference and casual discovery. However, for the task of causal discovery, existing work almost exclusively focus on the submodel where each observed variable is associated with a distinct source with non-zero variance. This results in the restriction that no observed variable can deterministically depend on other observed variables or latent confounders. In this paper, we extend the results on structure learning by focusing on a subclass of linear SCMs which do not have this property, i.e., models in which observed variables can be causally affected by any subset of the sources, and are allowed to be a deterministic function of other observed variables or latent confounders. This allows for a more realistic modeling of influence or information propagation in systems. We focus on the task of causal discovery form observational data generated from a member of this subclass. We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure. To the best of our knowledge, this is the first work that gives identifiability results for causal discovery under both latent confounding and deterministic relationships. Further, we propose an algorithm for recovering the underlying causal structure when the aforementioned conditions are satisfied. We validate our theoretical results both on synthetic and real datasets.
translated by 谷歌翻译