关于物理现象的学习和推理仍然是机器人开发的挑战,计算科学在寻找能够为过去事件和对未来情况的严格预测提供的准确方法中发挥了资本作用。我们提出了一种热力学知识的主动学习策略,以通过观察结果和推理。作为模型问题,我们采用了玻璃中包含的不同流体的晃动现象。从特定流体的全场和高分辨率合成数据开始,我们开发了一种跟踪(感知)和分析(推理)的方法。这种方法不仅在数据驱动(灰色框)建模中,而且在校正低数据模式和动态的部分观察中对物理和知识的重要性。提出的方法可扩展到其他领域,例如认知数字双胞胎的发展,能够从未经明确训练的现象中学习。
translated by 谷歌翻译
热力学可以看作是高认知水平上物理学的表达。因此,最近在许多领域中实现了其作为帮助机器学习程序获得准确和可信度的预测的潜在偏见。我们回顾热力学如何在学习过程中提供有用的见解。同时,我们研究了要描述给定现象的规模之类的方面的影响,对于此描述的相关变量的选择或可用于学习过程的不同技术。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
学习动态是机器学习(ML)的许多重要应用的核心,例如机器人和自主驾驶。在这些设置中,ML算法通常需要推理使用高维观察的物理系统,例如图像,而不访问底层状态。最近,已经提出了几种方法将从经典机制的前沿集成到ML模型中,以解决图像的物理推理的挑战。在这项工作中,我们清醒了这些模型的当前功能。为此,我们介绍一套由17个数据集组成的套件,该数据集基于具有呈现各种动态的物理系统的视觉观测。我们对几种强大的基线进行了彻底的和详细比较了物理启发方法的主要类别。虽然包含物理前沿的模型通常可以学习具有所需特性的潜在空间,但我们的结果表明这些方法无法显着提高标准技术。尽管如此,我们发现使用连续和时间可逆动力学的使用效益所有课程的模型。
translated by 谷歌翻译
我们提出了一种新的四管齐下的方法,在文献中首次建立消防员的情境意识。我们构建了一系列深度学习框架,彼此之叠,以提高消防员在紧急首次响应设置中进行的救援任务的安全性,效率和成功完成。首先,我们使用深度卷积神经网络(CNN)系统,以实时地分类和识别来自热图像的感兴趣对象。接下来,我们将此CNN框架扩展了对象检测,跟踪,分割与掩码RCNN框架,以及具有多模级自然语言处理(NLP)框架的场景描述。第三,我们建立了一个深入的Q学习的代理,免受压力引起的迷失方向和焦虑,能够根据现场消防环境中观察和存储的事实来制定明确的导航决策。最后,我们使用了一种低计算无监督的学习技术,称为张量分解,在实时对异常检测进行有意义的特征提取。通过这些临时深度学习结构,我们建立了人工智能系统的骨干,用于消防员的情境意识。要将设计的系统带入消防员的使用,我们设计了一种物理结构,其中处理后的结果被用作创建增强现实的投入,这是一个能够建议他们所在地的消防员和周围的关键特征,这对救援操作至关重要在手头,以及路径规划功能,充当虚拟指南,以帮助迷彩的第一个响应者恢复安全。当组合时,这四种方法呈现了一种新颖的信息理解,转移和综合方法,这可能会大大提高消防员响应和功效,并降低寿命损失。
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
在本文中,我们为非稳定于3D流体结构交互系统提供了一种基于深度学习的阶数(DL-ROM)。所提出的DL-ROM具有非线性状态空间模型的格式,并采用具有长短期存储器(LSTM)的经常性神经网络。我们考虑一种以状态空间格式的可弹性安装的球体的规范流体结构系统,其具有不可压缩的流体流动。我们开发了一种非线性数据驱动的耦合,用于预测横向方向自由振动球的非定常力和涡旋诱导的振动(VIV)锁定。我们设计输入输出关系作为用于流体结构系统的低维逼近的力和位移数据集的时间序列。基于VIV锁定过程的先验知识,输入功能包含一系列频率和幅度,其能够实现高效的DL-ROM,而无需用于低维建模的大量训练数据集。一旦训练,网络就提供了输入 - 输出动态的非线性映射,其可以通过反馈过程预测较长地平线的耦合流体结构动态。通过将LSTM网络与Eigensystem实现算法(时代)集成,我们构造了用于减少阶稳定性分析的数据驱动状态空间模型。我们通过特征值选择过程调查VIV的潜在机制和稳定性特征。为了了解频率锁定机制,我们研究了针对降低振荡频率和质量比的范围的特征值轨迹。与全阶模拟一致,通过组合的LSTM-ERA程序精确捕获频率锁定分支。所提出的DL-ROM与涉及流体结构相互作用的物理学数字双胞胎的基于物理的数字双胞胎。
translated by 谷歌翻译
在本文中,我们提出了一种深度学习技术,用于数据驱动的流体介质中波传播的预测。该技术依赖于基于注意力的卷积复发自动编码器网络(AB-CRAN)。为了构建波传播数据的低维表示,我们采用了基于转化的卷积自动编码器。具有基于注意力的长期短期记忆细胞的AB-CRAN体系结构构成了我们的深度神经网络模型,用于游行低维特征的时间。我们评估了针对标准复发性神经网络的拟议的AB-Cran框架,用于波传播的低维学习。为了证明AB-Cran模型的有效性,我们考虑了三个基准问题,即一维线性对流,非线性粘性汉堡方程和二维圣人浅水系统。我们的新型AB-CRAN结构使用基准问题的空间 - 时空数据集,可以准确捕获波幅度,并在长期范围内保留溶液的波特性。与具有长期短期记忆细胞的标准复发性神经网络相比,基于注意力的序列到序列网络增加了预测的时间莫。 Denoising自动编码器进一步减少了预测的平方平方误差,并提高了参数空间中的概括能力。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
近年来,机器学习的巨大进步已经开始对许多科学和技术的许多领域产生重大影响。在本文的文章中,我们探讨了量子技术如何从这项革命中受益。我们在说明性示例中展示了过去几年的科学家如何开始使用机器学习和更广泛的人工智能方法来分析量子测量,估计量子设备的参数,发现新的量子实验设置,协议和反馈策略,以及反馈策略,以及通常改善量子计算,量子通信和量子模拟的各个方面。我们重点介绍了公开挑战和未来的可能性,并在未来十年的一些投机愿景下得出结论。
translated by 谷歌翻译
Deep learning models, though having achieved great success in many different fields over the past years, are usually data hungry, fail to perform well on unseen samples, and lack of interpretability. Various prior knowledge often exists in the target domain and their use can alleviate the deficiencies with deep learning. To better mimic the behavior of human brains, different advanced methods have been proposed to identify domain knowledge and integrate it into deep models for data-efficient, generalizable, and interpretable deep learning, which we refer to as knowledge-augmented deep learning (KADL). In this survey, we define the concept of KADL, and introduce its three major tasks, i.e., knowledge identification, knowledge representation, and knowledge integration. Different from existing surveys that are focused on a specific type of knowledge, we provide a broad and complete taxonomy of domain knowledge and its representations. Based on our taxonomy, we provide a systematic review of existing techniques, different from existing works that survey integration approaches agnostic to taxonomy of knowledge. This survey subsumes existing works and offers a bird's-eye view of research in the general area of knowledge-augmented deep learning. The thorough and critical reviews of numerous papers help not only understand current progresses but also identify future directions for the research on knowledge-augmented deep learning.
translated by 谷歌翻译
数据驱动和深度学习方法已证明具有代替复杂材料的经典本构模型,显示路径依赖性并具有多个固有量表。然而,以增量配方构建本构模型的必要性导致了数据驱动的方法,例如物理量,例如变形,与人工,非物理的混合,例如变形和时间的增量。神经网络和随之而来的本构模型依赖于特定的增量公式,无法在及时识别本地材料表示,并且概括不良。在这里,我们提出了一种新方法,该方法首次允许将材料表示与增量配方解矛。受热力学基于人工神经网络(TANN)和内部变量理论的启发,进化坦(Etann)是连续的,因此与上述人工数量无关。所提出的方法的关键特征是以普通微分方程的形式发现内部变量的进化方程,而不是以增量离散时间形式。在这项工作中,我们将注意力集中在并置,并展示如何在Etann中实现固体力学的各种一般概念。热力学定律是在网络结构中刻连接的,并且允许始终保持一致的预测。我们提出了一种方法,该方法可以从数据和第一原理中发现从复杂材料中的微观磁场中可接受的内部变量集。通过几种应用涉及各种复杂的材料行为,从可塑性到损伤和粘度,可以证明所提出方法的功能以及所提出方法的可伸缩性。
translated by 谷歌翻译
相位场建模是一种有效但计算昂贵的方法,用于捕获材料中的中尺度形态和微观结构演化。因此,需要快速且可推广的替代模型来减轻计算征税流程的成本,例如在材料的优化和设计中。尖锐相边界的存在所产生的物理现象的固有不连续性使替代模型的训练繁琐。我们开发了一个框架,该框架将卷积自动编码器架构与深神经操作员(DeepOnet)集成在一起,以了解两相混合物的动态演化,并加速预测微结构演变的时间。我们利用卷积自动编码器在低维的潜在空间中提供微观结构数据的紧凑表示。 DeepOnet由两个子网络组成,一个用于编码固定数量的传感器位置(分支网)的输入函数,另一个用于编码输出功能的位置(TRUNK NET),了解微观结构Evolution的中尺度动力学从自动编码器潜在空间。然后,卷积自动编码器的解码器部分从deponet预测中重建了时间进化的微结构。然后,可以使用训练有素的DeepOnet架构来替换插值任务中的高保真相位数值求解器或在外推任务中加速数值求解器。
translated by 谷歌翻译
经典可塑性模型的历史依赖性行为通常是由现象学定律演变而来的内部变量驱动的。解释这些内部变量如何代表变形的历史,缺乏直接测量这些内部变量进行校准和验证的困难,以及这些现象学定律的弱物理基础一直被批评为创建现实模型的障碍。在这项工作中,将图形数据(例如有限元解决方案)上的几何机器学习用作建立非线性尺寸还原技术和可塑性模型之间的联系的手段。基于几何学习的编码可以将丰富的时间历史数据嵌入到低维的欧几里得空间上,以便可以在嵌入式特征空间中预测塑性变形的演变。然后,相应的解码器可以将这些低维内变量转换回加权图,从而可以观察和分析塑性变形的主导拓扑特征。
translated by 谷歌翻译
机器学习正迅速成为科学计算的核心技术,并有许多机会推进计算流体动力学领域。从这个角度来看,我们强调了一些潜在影响最高的领域,包括加速直接数值模拟,以改善湍流闭合建模,并开发增强的减少订单模型。我们还讨论了机器学习的新兴领域,这对于计算流体动力学以及应考虑的一些潜在局限性是有希望的。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
这篇综述解决了在深度强化学习(DRL)背景下学习测量数据的抽象表示的问题。尽管数据通常是模棱两可,高维且复杂的解释,但许多动态系统可以通过一组低维状态变量有效地描述。从数据中发现这些状态变量是提高数据效率,稳健性和DRL方法的概括,应对维度的诅咒以及将可解释性和见解带入Black-Box DRL的关键方面。这篇综述通过描述用于学习世界的学习代表的主要深度学习工具,提供对方法和原则的系统观点,总结应用程序,基准和评估策略,并讨论开放的方式,从而提供了DRL中无监督的代表性学习的全面概述,挑战和未来的方向。
translated by 谷歌翻译
机器人社区在为软机器人设备建模提供的理论工具的复杂程度中看到了指数增长。已经提出了不同的解决方案以克服与软机器人建模相关的困难,通常利用其他科学学科,例如连续式机械和计算机图形。这些理论基础通常被认为是理所当然的,这导致复杂的文献,因此,从未得到完整审查的主题。Withing这种情况下,提交的文件的目标是双重的。突出显示涉及建模技术的不同系列的常见理论根源,采用统一语言,以简化其主要连接和差异的分析。因此,对上市接近自然如下,并最终提供在该领域的主要作品的完整,解开,审查。
translated by 谷歌翻译
在本文中,我们根据卷积神经网络训练湍流模型。这些学到的湍流模型改善了在模拟时为不可压缩的Navier-Stokes方程的溶解不足的低分辨率解。我们的研究涉及开发可区分的数值求解器,该求解器通过多个求解器步骤支持优化梯度的传播。这些属性的重要性是通过那些模型的出色稳定性和准确性来证明的,这些模型在训练过程中展开了更多求解器步骤。此外,我们基于湍流物理学引入损失项,以进一步提高模型的准确性。这种方法应用于三个二维的湍流场景,一种均匀的腐烂湍流案例,一个暂时进化的混合层和空间不断发展的混合层。与无模型模拟相比,我们的模型在长期A-posterii统计数据方面取得了重大改进,而无需将这些统计数据直接包含在学习目标中。在推论时,我们提出的方法还获得了相似准确的纯粹数值方法的实质性改进。
translated by 谷歌翻译