现代深度神经网络(DNN)的成功基于其在多层转换投入以建立良好高级表示的能力。因此,了解这种表示学习过程至关重要。但是,我们不能使用涉及无限宽度限制的标准理论方法,因为它们消除了代表性学习。因此,我们开发了一个新的无限宽度限制,即表示的学习限制,该限制表现出表示形式的学习反映,但在有限宽度网络中,但同时仍然非常容易处理。例如,表示学习限制在深处的高斯过程中提供了恰好具有多种内核的多元高斯后期,包括所有各向同性(距离依赖)内核。我们得出一个优雅的目标,描述了每个网络层如何学习在输入和输出之间插值的表示形式。最后,我们使用此限制和目标来开发对内核方法的灵活,深刻的概括,我们称之为深内核机器(DKMS)。我们表明,可以使用受高斯过程文献中诱导点方法启发的方法将DKMS缩放到大数据集,并且我们表明DKMS表现出优于其他基于内核方法的性能。
translated by 谷歌翻译
最近的工作引入了深度内核过程作为NNS的完全基于内核的替代方案(Aitchison等人.2020)。深入的内核过程通过在正半定矩阵上的分布和执行非线性变换的分布中来灵活地学习良好的顶层表示。一个特定的深核流程,深度愿望过程(DWP)是特别令人感兴趣的,因为它可以与其相当于可以完全表达克矩阵的核的深层高斯过程(DGP)前沿。然而,由于缺乏积极半定矩阵的分布缺乏足够灵活的分布,DWP的推断尚未实现。在这里,我们通过推广Bartlett对概率密度的分解来提供一种新的半定矩阵在正半定矩阵上获得灵活分布的新方法。我们使用这个新的分发来开发包括跨层依赖的DWP的近似后验。我们为DWP开发了双随机诱导点推理方案,实验显示DWP中的推断可以提高在DGP中的性能,在DGP中具有相同的产品。
translated by 谷歌翻译
Whilst deep neural networks have shown great empirical success, there is still much work to be done to understand their theoretical properties. In this paper, we study the relationship between random, wide, fully connected, feedforward networks with more than one hidden layer and Gaussian processes with a recursive kernel definition. We show that, under broad conditions, as we make the architecture increasingly wide, the implied random function converges in distribution to a Gaussian process, formalising and extending existing results by Neal (1996) to deep networks. To evaluate convergence rates empirically, we use maximum mean discrepancy. We then compare finite Bayesian deep networks from the literature to Gaussian processes in terms of the key predictive quantities of interest, finding that in some cases the agreement can be very close. We discuss the desirability of Gaussian process behaviour and review non-Gaussian alternative models from the literature. 1
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
我们引入了重新定性,这是一种数据依赖性的重新聚集化,将贝叶斯神经网络(BNN)转化为后部的分布,其KL对BNN对BNN的差异随着层宽度的增长而消失。重新定义图直接作用于参数,其分析简单性补充了宽BNN在功能空间中宽BNN的已知神经网络过程(NNGP)行为。利用重新定性,我们开发了马尔可夫链蒙特卡洛(MCMC)后采样算法,该算法将BNN更快地混合在一起。这与MCMC在高维度上的表现差异很差。对于完全连接和残留网络,我们观察到有效样本量高达50倍。在各个宽度上都取得了改进,并在层宽度的重新培训和标准BNN之间的边缘。
translated by 谷歌翻译
宽度限制最近是深度学习研究的焦点:模数计算实用,做更广泛的网络优于较窄的网络?当传统网络增益具有宽度的代表性,潜在掩盖任何负面影响,回答这个问题一直在具有挑战性。我们在本文中的分析通过神经网络的概括到深层高斯过程(深GP),一类非参数分层模型,占据了神经网络的非参数分层模型。在这样做时,我们的目标是了解一旦对给定建模任务的容量足够的容量,才能了解宽度(标准)神经网络。我们深入GP的理论和经验结果表明,大宽度可能对等级模型有害。令人惊讶的是,我们证明了甚至非参数的深GP融合到高斯过程,实际上变得浅薄而没有任何代表性的力量。对应于数据适应性基本函数的混合的后后,与宽度变得较小。我们的尾部分析表明,宽度和深度具有相反的影响:深度突出了模型的非高斯,而宽度使模型越来越高斯。我们发现有一个“甜蜜点”,可以在限制GP行为防止适应性之前最大化测试性能,以宽度= 1或宽度= 2用于非参数深GP。这些结果对具有L2正规化训练的传统神经网络中的相同现象(类似于参数的高斯),使得这种神经网络可能需要多达500至1000个隐藏单元的现象,以获得足够的容量 - 取决于数据集 - 但进一步的宽度降低了性能。
translated by 谷歌翻译
Deep Gaussian工艺(DGP)作为贝叶斯学习的先验模型直观地利用功能组成中的表达能力。 DGP还提供了不同的建模功能,但是推断很具有挑战性,因为潜在功能空间的边缘化是无法处理的。借助Bochner定理,具有平方指数内核的DGP可以看作是由随机特征层,正弦和余弦激活单元以及随机重量层组成的深度三角网络。在具有瓶颈的宽极限中,我们表明重量空间视图产生了相同的有效协方差函数,该函数先前在功能空间中获得。同样,在网络参数上改变先前的分布相当于使用不同的内核。因此,DGP可以转换为深瓶颈触发网络,可以通过该网络获得确切的最大后验估计。有趣的是,网络表示可以研究DGP的神经切线核,这也可能揭示了棘手的预测分布的平均值。从统计上讲,与浅网络不同,有限宽度的深网具有与极限内核的协方差,并且内部和外部宽度可能在功能学习中起不同的作用。存在数值模拟以支持我们的发现。
translated by 谷歌翻译
深神经网络(DNN)是用于压缩和蒸馏信息的强大工具。由于它们的规模和复杂性,通常涉及数十亿间相互作用的内部自由度,精确分析方法通常会缩短。这种情况下的共同策略是识别平均潜在的快速微观变量的不稳定行为的缓慢自由度。在这里,我们在训练结束时识别在过度参数化的深卷积神经网络(CNNS)中发生的尺度的分离。它意味着神经元预激活与几乎高斯的方式与确定性潜在内核一起波动。在对于具有无限许多频道的CNN来说,这些内核是惰性的,对于有限的CNNS,它们以分析的方式通过数据适应和学习数据。由此产生的深度学习的热力学理论产生了几种深度非线性CNN玩具模型的准确预测。此外,它还提供了新的分析和理解CNN的方法。
translated by 谷歌翻译
我们分析了通过梯度流通过自洽动力场理论训练的无限宽度神经网络中的特征学习。我们构建了确定性动力学阶参数的集合,该参数是内部产物内核,用于在成对的时间点中,每一层中隐藏的单位激活和梯度,从而减少了通过训练对网络活动的描述。这些内核顺序参数共同定义了隐藏层激活分布,神经切线核的演变以及因此输出预测。我们表明,现场理论推导恢复了从Yang和Hu(2021)获得张量程序的无限宽度特征学习网络的递归随机过程。对于深线性网络,这些内核满足一组代数矩阵方程。对于非线性网络,我们提供了一个交替的采样过程,以求助于内核顺序参数。我们提供了与各种近似方案的自洽解决方案的比较描述。最后,我们提供了更现实的设置中的实验,这些实验表明,在CIFAR分类任务上,在不同宽度上保留了CNN的CNN的损耗和内核动力学。
translated by 谷歌翻译
了解特征学习如何影响概括是现代深度学习理论的最重要目标之一。在这里,我们研究了学习表示的能力如何影响一类简单模型的概括性能:深贝叶斯线性神经网络接受了非结构化高斯数据的训练。通过将深层随机特征模型与所有训练所有层的深网进行比较,我们将提供详细的表征宽度,深度,数据密度和先验不匹配之间的相互作用。我们表明,在存在标签噪声的情况下,这两种模型都显示出样本的双重变化行为。如果有狭窄的瓶颈层,那么随机特征模型还可以显示模型的双重变化,而深网不显示这些分歧。随机特征模型可以具有特定的宽度,这些宽度对于在给定的数据密度下是最佳的概括,同时使神经网络尽可能宽或狭窄始终是最佳的。此外,我们表明,对内核限制学习曲线的前阶校正无法区分所有培训所有层的随机特征模型和深层网络。综上所述,我们的发现开始阐明建筑细节如何影响这种简单的深层回归模型类别的概括性能。
translated by 谷歌翻译
一项开创性的工作[Jacot等,2018]表明,在特定参数化下训练神经网络等同于执行特定的内核方法,因为宽度延伸到无穷大。这种等效性为将有关内核方法的丰富文献结果应用于神经网的结果开辟了一个有希望的方向,而神经网络很难解决。本调查涵盖了内核融合的关键结果,因为宽度进入无穷大,有限宽度校正,应用以及对相应方法的局限性的讨论。
translated by 谷歌翻译
最近的作品表明,有限的贝叶斯神经网络有时可能会越优于其无限堂兄弟,因为有限网络可以灵活地调整其内部表示。然而,我们对有限网络的学习隐藏层表示如何与无限网络的固定表示不同的理论理解仍然不完整。研究了对网络的扰动有限宽度校正,但已经研究过的网络,但学习特征的渐近学尚未完全表征。在这里,我们认为具有线性读数和高斯可能性的任何贝叶斯网络的平均特征内核的领先有限宽度校正具有很大程度上的普遍形式。我们明确地说明了三个易行网络架构:深线性完全连接和卷积网络,以及具有单个非线性隐藏层的网络。我们的结果开始阐明任务相关的学习信号如何塑造宽阔的贝叶斯神经网络的隐藏层表示。
translated by 谷歌翻译
贝叶斯神经网络和深度集合代表了深入学习中不确定性量化的两种现代范式。然而,这些方法主要因内存低效率问题而争取,因为它们需要比其确定性对应物高出几倍的参数储存。为了解决这个问题,我们使用少量诱导重量增强每层的重量矩阵,从而将不确定性定量突出到这种低尺寸空间中。我们进一步扩展了Matheron的有条件高斯采样规则,以实现快速的重量采样,这使得我们的推理方法能够与合并相比保持合理的运行时间。重要的是,我们的方法在具有完全连接的神经网络和RESNET的预测和不确定性估算任务中实现了竞争性能,同时将参数大小减少到$单辆$ \ LEQ 24.3 \%$的参数大小神经网络。
translated by 谷歌翻译
为了更好地了解大型神经网络的理论行为,有几项工程已经分析了网络宽度倾向于无穷大的情况。在该制度中,随机初始化的影响和训练神经网络的过程可以与高斯过程和神经切线内核等分析工具正式表达。在本文中,我们审查了在这种无限宽度神经网络中量化不确定性的方法,并将它们与贝叶斯推理框架中的高斯过程的关系进行比较。我们利用沿途使用几个等价结果,以获得预测不确定性的确切闭合性解决方案。
translated by 谷歌翻译
我们制定自然梯度变推理(VI),期望传播(EP),和后线性化(PL)作为牛顿法用于优化贝叶斯后验分布的参数扩展。这种观点明确地把数值优化框架下的推理算法。我们表明,通用近似牛顿法从优化文献,即高斯 - 牛顿和准牛顿方法(例如,该BFGS算法),仍然是这种“贝叶斯牛顿”框架下有效。这导致了一套这些都保证以产生半正定协方差矩阵,不像标准VI和EP新颖算法。我们统一的观点提供了新的见解各种推理方案之间的连接。所有提出的方法适用于具有高斯事先和非共轭的可能性,这是我们与(疏)高斯过程和状态空间模型展示任何模型。
translated by 谷歌翻译
神经切线核是根据无限宽度神经网络的参数分布定义的内核函数。尽管该极限不切实际,但神经切线内核允许对神经网络进行更直接的研究,并凝视着黑匣子的面纱。最近,从理论上讲,Laplace内核和神经切线内核在$ \ Mathbb {S}}^{D-1} $中共享相同的复制核Hilbert空间,暗示了它们的等价。在这项工作中,我们分析了两个内核的实际等效性。我们首先是通过与核的准确匹配,然后通过与高斯过程的后代匹配来进行匹配。此外,我们分析了$ \ mathbb {r}^d $中的内核,并在回归任务中进行实验。
translated by 谷歌翻译
我们提供了来自两个常见的低级内核近似产生的近似高斯过程(GP)回归的保证:基于随机傅里叶功能,并基于截断内核的Mercer扩展。特别地,我们将kullback-leibler在精确的gp和由一个上述低秩近似的一个与其内核中的一个引起的kullback-leibler发散相结合,以及它们的相应预测密度之间,并且我们还绑定了预测均值之间的误差使用近似GP使用精确的GP计算的矢量和预测协方差矩阵之间的载体。我们为模拟数据和标准基准提供了实验,以评估我们理论界的有效性。
translated by 谷歌翻译
我们提供了来自两个常见的低级内核近似产生的近似高斯过程(GP)回归的保证:基于随机傅里叶功能,并基于截断内核的Mercer扩展。特别地,我们将kullback-leibler在精确的gp和由一个上述低秩近似的一个与其内核中的一个引起的kullback-leibler发散相结合,以及它们的相应预测密度之间,并且我们还绑定了预测均值之间的误差使用近似GP使用精确的GP计算的矢量和预测协方差矩阵之间的载体。我们为模拟数据和标准基准提供了实验,以评估我们理论界的有效性。
translated by 谷歌翻译
Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.
translated by 谷歌翻译
It has long been known that a single-layer fully-connected neural network with an i.i.d. prior over its parameters is equivalent to a Gaussian process (GP), in the limit of infinite network width. This correspondence enables exact Bayesian inference for infinite width neural networks on regression tasks by means of evaluating the corresponding GP. Recently, kernel functions which mimic multi-layer random neural networks have been developed, but only outside of a Bayesian framework. As such, previous work has not identified that these kernels can be used as covariance functions for GPs and allow fully Bayesian prediction with a deep neural network. In this work, we derive the exact equivalence between infinitely wide deep networks and GPs. We further develop a computationally efficient pipeline to compute the covariance function for these GPs. We then use the resulting GPs to perform Bayesian inference for wide deep neural networks on MNIST and CIFAR-10. We observe that trained neural network accuracy approaches that of the corresponding GP with increasing layer width, and that the GP uncertainty is strongly correlated with trained network prediction error. We further find that test performance increases as finite-width trained networks are made wider and more similar to a GP, and thus that GP predictions typically outperform those of finite-width networks. Finally we connect the performance of these GPs to the recent theory of signal propagation in random neural networks. * Both authors contributed equally to this work. † Work done as a member of the Google AI Residency program (g.co/airesidency). 1 Throughout this paper, we assume the conditions on the parameter distributions and nonlinearities are such that the Central Limit Theorem will hold; for instance, that the weight variance is scaled inversely proportional to the layer width.
translated by 谷歌翻译