关键场景生成需要在逻辑方案中从无限参数空间中找到关键参数组合的能力。现有解决方案旨在探索初始场景中参数的相关性,而无需考虑操作序列中的参数之间的连接。如何对动作序列进行建模并考虑方案中不同动作参数的影响仍然是解决问题的关键挑战。在本文中,我们提出了一个框架,以生成关键方案,以加快评估特定任务。具体而言,我们首先提出了一种描述语言BTSCENARIO,以建模包含地图,参与者,参与者之间的相互作用的场景。然后,我们使用强化学习来搜索关键参数的组合。通过采用动作掩码,可以防止非固定长度和序列在参数空间中的影响。我们证明,在各种情况下,提出的框架比随机测试和组合测试方法更有效。
translated by 谷歌翻译
与人类驾驶相比,自动驾驶汽车有可能降低事故率。此外,这是自动车辆在过去几年中快速发展的动力。在高级汽车工程师(SAE)自动化级别中,车辆和乘客的安全责任从驾驶员转移到自动化系统,因此对这种系统进行彻底验证至关重要。最近,学术界和行业将基于方案的评估作为道路测试的互补方法,减少了所需的整体测试工作。在将系统的缺陷部署在公共道路上之前,必须确定系统的缺陷,因为没有安全驱动程序可以保证这种系统的可靠性。本文提出了基于强化学习(RL)基于场景的伪造方法,以在人行横道交通状况中搜索高风险场景。当正在测试的系统(SUT)不满足要求时,我们将场景定义为风险。我们的RL方法的奖励功能是基于英特尔的责任敏感安全性(RSS),欧几里得距离以及与潜在碰撞的距离。
translated by 谷歌翻译
自动化驾驶系统(ADSS)近年来迅速进展。为确保这些系统的安全性和可靠性,在未来的群心部署之前正在进行广泛的测试。测试道路上的系统是最接近真实世界和理想的方法,但它非常昂贵。此外,使用此类现实世界测试覆盖稀有角案件是不可行的。因此,一种流行的替代方案是在一些设计精心设计的具有挑战性场景中评估广告的性能,A.k.a.基于场景的测试。高保真模拟器已广泛用于此设置中,以最大限度地提高测试的灵活性和便利性 - 如果发生的情况。虽然已经提出了许多作品,但为测试特定系统提供了各种框架/方法,但这些作品之间的比较和连接仍然缺失。为了弥合这一差距,在这项工作中,我们在高保真仿真中提供了基于场景的测试的通用制定,并对现有工作进行了文献综述。我们进一步比较了它们并呈现开放挑战以及潜在的未来研究方向。
translated by 谷歌翻译
强化学习(RL)已证明可以在各种任务中达到超级人类水平的表现。但是,与受监督的机器学习不同,将其推广到各种情况的学习策略仍然是现实世界中最具挑战性的问题之一。自主驾驶(AD)提供了一个多方面的实验领域,因为有必要在许多变化的道路布局和可能的交通情况大量分布中学习正确的行为,包括个人驾驶员个性和难以预测的交通事件。在本文中,我们根据可配置,灵活和性能的代码库为AD提出了一个具有挑战性的基准。我们的基准测试使用了随机场景生成器的目录,包括用于道路布局和交通变化的多种机制,不同的数值和视觉观察类型,不同的动作空间,不同的车辆模型,并允许在静态场景定义下使用。除了纯粹的算法见解外,我们面向应用程序的基准还可以更好地理解设计决策的影响,例如行动和观察空间对政策的普遍性。我们的基准旨在鼓励研究人员提出能够在各种情况下成功概括的解决方案,这是当前RL方法失败的任务。基准的代码可在https://github.com/seawee1/driver-dojo上获得。
translated by 谷歌翻译
由于交通环境的复杂性和波动性,自主驾驶中的决策是一个显着难的问题。在这个项目中,我们使用深度Q-network,以及基于规则的限制来使车道变化的决定。可以通过将高级横向决策与基于低级规则的轨迹监视相结合来获得安全高效的车道改变行为。预计该代理商在培训中,在实际的UDAcity模拟器中进行了适当的车道更换操作,总共100次发作。结果表明,基于规则的DQN比DQN方法更好地执行。基于规则的DQN达到0.8的安全速率和47英里/小时的平均速度
translated by 谷歌翻译
自动驾驶在过去二十年中吸引了重要的研究兴趣,因为它提供了许多潜在的好处,包括释放驾驶和减轻交通拥堵的司机等。尽管进展有前途,但车道变化仍然是自治车辆(AV)的巨大挑战,特别是在混合和动态的交通方案中。最近,强化学习(RL)是一种强大的数据驱动控制方法,已被广泛探索了在令人鼓舞的效果中的通道中的车道改变决策。然而,这些研究的大多数研究专注于单车展,并且在多个AVS与人类驱动车辆(HDV)共存的情况下,道路变化已经受到稀缺的关注。在本文中,我们在混合交通公路环境中制定了多个AVS的车道改变决策,作为多功能增强学习(Marl)问题,其中每个AV基于相邻AV的动作使车道变化的决定和HDV。具体地,使用新颖的本地奖励设计和参数共享方案开发了一种多代理优势演员批评网络(MA2C)。特别是,提出了一种多目标奖励功能来纳入燃油效率,驾驶舒适度和自主驾驶的安全性。综合实验结果,在三种不同的交通密度和各级人类司机侵略性下进行,表明我们所提出的Marl框架在效率,安全和驾驶员舒适方面始终如一地优于几个最先进的基准。
translated by 谷歌翻译
Deep Neural Networks (DNNs) have been widely used to perform real-world tasks in cyber-physical systems such as Autonomous Driving Systems (ADS). Ensuring the correct behavior of such DNN-Enabled Systems (DES) is a crucial topic. Online testing is one of the promising modes for testing such systems with their application environments (simulated or real) in a closed loop taking into account the continuous interaction between the systems and their environments. However, the environmental variables (e.g., lighting conditions) that might change during the systems' operation in the real world, causing the DES to violate requirements (safety, functional), are often kept constant during the execution of an online test scenario due to the two major challenges: (1) the space of all possible scenarios to explore would become even larger if they changed and (2) there are typically many requirements to test simultaneously. In this paper, we present MORLOT (Many-Objective Reinforcement Learning for Online Testing), a novel online testing approach to address these challenges by combining Reinforcement Learning (RL) and many-objective search. MORLOT leverages RL to incrementally generate sequences of environmental changes while relying on many-objective search to determine the changes so that they are more likely to achieve any of the uncovered objectives. We empirically evaluate MORLOT using CARLA, a high-fidelity simulator widely used for autonomous driving research, integrated with Transfuser, a DNN-enabled ADS for end-to-end driving. The evaluation results show that MORLOT is significantly more effective and efficient than alternatives with a large effect size. In other words, MORLOT is a good option to test DES with dynamically changing environments while accounting for multiple safety requirements.
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
如最近的研究所示,支持机器智能的系统容易受到对抗性操纵或自然分配变化产生的测试案例的影响。这引起了人们对现实应用程序部署机器学习算法的极大关注,尤其是在自动驾驶(AD)等安全性领域中。另一方面,由于自然主义场景的传统广告测试需要数亿英里,这是由于现实世界中安全关键方案的高度和稀有性。结果,已经探索了几种自动驾驶评估方法,但是,这些方法通常是基于不同的仿真平台,安全性 - 关键的情况的类型,场景生成算法和驾驶路线变化的方法。因此,尽管在自动驾驶测试方面进行了大量努力,但在相似条件下,比较和了解不同测试场景产生算法和测试机制的有效性和效率仍然是一项挑战。在本文中,我们旨在提供第一个统一的平台Safebench,以整合不同类型的安全性测试方案,场景生成算法以及其他变体,例如驾驶路线和环境。同时,我们实施了4种基于深入学习的AD算法,具有4种类型的输入(例如,鸟类视图,相机,相机),以对SafeBench进行公平的比较。我们发现,我们的生成的测试场景确实更具挑战性,并观察到在良性和关键安全测试方案下的广告代理的性能之间的权衡。我们认为,我们的统一平台安全基地用于大规模和有效的自动驾驶测试,将激发新的测试场景生成和安全AD算法的开发。 SafeBench可从https://safebench.github.io获得。
translated by 谷歌翻译
生成至关重要但难以收集的安全 - 关键方案,提供了一种评估自动驾驶系统鲁棒性的有效方法。但是,情景和发电方法的效率的多样性受到安全至关重要情景的稀有性和结构的严格限制。因此,仅估计观察数据分布的现有生成模型并不满足解决此问题的满足。在本文中,我们将因果关系纳入场景生成,并提出基于流动的生成框架,因果自回旋流量(Causalaf)。 Causalaf鼓励生成模型通过新颖的因果掩蔽操作来揭示和遵循生成的对象之间的因果关系,而不是仅从观察数据中搜索样本。通过学习生成场景如何引起风险情况而不仅仅是从数据学习相关性的原因和效应机制,Causalaf显着提高了学习效率。在三种异构交通情况上进行的广泛实验表明,Causalaf需要更少的优化资源来有效地产生安全至关重要的情况。我们还表明,使用生成的方案作为其他培训样本在经验上可以改善自主驾驶算法的鲁棒性。
translated by 谷歌翻译
我们解决了由具有不同驱动程序行为的道路代理人填充的密集模拟交通环境中的自我车辆导航问题。由于其异构行为引起的代理人的不可预测性,这种环境中的导航是挑战。我们提出了一种新的仿真技术,包括丰富现有的交通模拟器,其具有与不同程度的侵略性程度相对应的行为丰富的轨迹。我们在驾驶员行为建模算法的帮助下生成这些轨迹。然后,我们使用丰富的模拟器培训深度加强学习(DRL)策略,包括一组高级车辆控制命令,并在测试时间使用此策略来执行密集流量的本地导航。我们的政策隐含地模拟了交通代理商之间的交互,并计算了自助式驾驶员机动,例如超速,超速,编织和突然道路变化的激进驾驶员演习的安全轨迹。我们增强的行为丰富的模拟器可用于生成由对应于不同驱动程序行为和流量密度的轨迹组成的数据集,我们的行为的导航方案可以与最先进的导航算法相结合。
translated by 谷歌翻译
行人在场的运动控制算法对于开发安全可靠的自动驾驶汽车(AV)至关重要。传统运动控制算法依赖于手动设计的决策政策,这些政策忽略了AV和行人之间的相互作用。另一方面,深度强化学习的最新进展允许在没有手动设计的情况下自动学习政策。为了解决行人在场的决策问题,作者介绍了一个基于社会价值取向和深入强化学习(DRL)的框架,该框架能够以不同的驾驶方式生成决策政策。该政策是在模拟环境中使用最先进的DRL算法培训的。还引入了适合DRL训练的新型计算效率的行人模型。我们执行实验以验证我们的框架,并对使用两种不同的无模型深钢筋学习算法获得的策略进行了比较分析。模拟结果表明,开发的模型如何表现出自然的驾驶行为,例如短暂的驾驶行为,以促进行人的穿越。
translated by 谷歌翻译
交叉点是自主行驶中最复杂和事故的城市场景之一,其中制造安全和计算有效的决策是非微不足道的。目前的研究主要关注简化的交通状况,同时忽略了混合交通流量的存在,即车辆,骑自行车者和行人。对于城市道路而言,不同的参与者导致了一个非常动态和复杂的互动,从而冒着学习智能政策的困难。本文在集成决策和控制框架中开发动态置换状态表示,以处理与混合业务流的信号化交集。特别地,该表示引入了编码功能和总和运算符,以构建来自环境观察的驱动状态,能够处理不同类型和变体的交通参与者。构建了受约束的最佳控制问题,其中目标涉及跟踪性能,并且不同参与者和信号灯的约束分别设计以确保安全性。我们通过离线优化编码函数,值函数和策略函数来解决这个问题,其中编码函数给出合理的状态表示,然后用作策略和值函数的输入。禁止策略培训旨在重用从驾驶环境中的观察,并且使用时间通过时间来利用策略函数和编码功能联合。验证结果表明,动态置换状态表示可以增强IDC的驱动性能,包括具有大边距的舒适性,决策合规性和安全性。训练有素的驾驶政策可以实现复杂交叉口的高效和平滑通过,同时保证驾驶智能和安全性。
translated by 谷歌翻译
自动驾驶汽车和卡车,自动车辆(AVS)不应被监管机构和公众接受,直到它们对安全性和可靠性有更高的信心 - 这可以通过测试最实际和令人信服地实现。但是,现有的测试方法不足以检查AV控制器的端到端行为,涉及与诸如行人和人机车辆等多个独立代理的交互的复杂,现实世界的角落案件。在街道和高速公路上的测试驾驶AVS无法捕获许多罕见的事件时,现有的基于仿真的测试方法主要关注简单的情景,并且不适合需要复杂的周围环境的复杂驾驶情况。为了解决这些限制,我们提出了一种新的模糊测试技术,称为AutoFuzz,可以利用广泛使用的AV模拟器的API语法。生成语义和时间有效的复杂驾驶场景(场景序列)。 AutoFuzz由API语法的受限神经网络(NN)进化搜索引导,以生成寻求寻找独特流量违规的方案。评估我们的原型基于最先进的学习的控制器,两个基于规则的控制器和一个工业级控制器,显示了高保真仿真环境中高效地找到了数百个流量违规。此外,通过AutoFuzz发现的基于学习的控制器进行了微调的控制器,成功减少了新版本的AV控制器软件中发现的流量违规。
translated by 谷歌翻译
在强化学习(RL)的试验和错误机制中,我们期望学习安全的政策时出现臭名昭着的矛盾:如何学习没有足够数据和关于危险区域的先前模型的安全政策?现有方法主要使用危险行动的后期惩罚,这意味着代理人不会受到惩罚,直到体验危险。这一事实导致代理商也无法在收敛之后学习零违规政策。否则,它不会收到任何惩罚并失去有关危险的知识。在本文中,我们提出了安全设置的演员 - 评论家(SSAC)算法,它使用面向安全的能量函数或安全索引限制了策略更新。安全索引旨在迅速增加,以便潜在的危险行动,这使我们能够在动作空间上找到安全设置,或控制安全集。因此,我们可以在服用它们之前识别危险行为,并在收敛后进一步获得零限制违规政策。我们声称我们可以以类似于学习价值函数的无模型方式学习能量函数。通过使用作为约束目标的能量函数转变,我们制定了受约束的RL问题。我们证明我们基于拉格朗日的解决方案确保学习的政策将收敛到某些假设下的约束优化。在复杂的模拟环境和硬件循环(HIL)实验中评估了所提出的算法,具有来自自动车辆的真实控制器。实验结果表明,所有环境中的融合政策达到了零限制违规和基于模型的基线的相当性能。
translated by 谷歌翻译
最近,自主驾驶社会上有许多进展,吸引了学术界和工业的很多关注。然而,现有的作品主要专注于汽车,自动驾驶卡车算法和模型仍然需要额外的开发。在本文中,我们介绍了智能自动驾驶卡车系统。我们所呈现的系统由三个主要组成部分组成,1)一个现实的交通仿真模块,用于在测试场景中产生现实的交通流量,2)设计和评估了在现实世界部署中模仿实际卡车响应的高保真卡车模型,3 )具有基于学习的决策算法和多模轨迹策划仪的智能计划模块,考虑到卡车的约束,道路斜率变化和周围的交通流量。我们为每个组分单独提供定量评估,以证明每个部件的保真度和性能。我们还将我们的建议系统部署在真正的卡车上,并进行真实的世界实验,表明我们的系统能力缓解了SIM-TO-REAL差距。我们的代码可以在https://github.com/inceptioresearch/iits提供
translated by 谷歌翻译
然而,由于各种交通/道路结构方案以及人类驾驶员行为的长时间分布,自动驾驶的感应,感知和本地化取得了重大进展,因此,对于智能车辆来说,这仍然是一个持开放态度的挑战始终知道如何在有可用的传感 /感知 /本地化信息的道路上做出和执行最佳决定。在本章中,我们讨论了人工智能,更具体地说,强化学习如何利用运营知识和安全反射来做出战略性和战术决策。我们讨论了一些与强化学习解决方案的鲁棒性及其对自动驾驶驾驶策略的实践设计有关的具有挑战性的问题。我们专注于在高速公路上自动驾驶以及增强学习,车辆运动控制和控制屏障功能的整合,从而实现了可靠的AI驾驶策略,可以安全地学习和适应。
translated by 谷歌翻译
Traditional planning and control methods could fail to find a feasible trajectory for an autonomous vehicle to execute amongst dense traffic on roads. This is because the obstacle-free volume in spacetime is very small in these scenarios for the vehicle to drive through. However, that does not mean the task is infeasible since human drivers are known to be able to drive amongst dense traffic by leveraging the cooperativeness of other drivers to open a gap. The traditional methods fail to take into account the fact that the actions taken by an agent affect the behaviour of other vehicles on the road. In this work, we rely on the ability of deep reinforcement learning to implicitly model such interactions and learn a continuous control policy over the action space of an autonomous vehicle. The application we consider requires our agent to negotiate and open a gap in the road in order to successfully merge or change lanes. Our policy learns to repeatedly probe into the target road lane while trying to find a safe spot to move in to. We compare against two model-predictive control-based algorithms and show that our policy outperforms them in simulation.
translated by 谷歌翻译
本文提出了一个基于加固学习(RL)的电动连接车辆(CV)的生态驾驶框架,以提高信号交叉点的车辆能效。通过整合基于型号的汽车策略,改变车道的政策和RL政策来确保车辆代理的安全操作。随后,制定了马尔可夫决策过程(MDP),该过程使车辆能够执行纵向控制和横向决策,从而共同优化了交叉口附近CVS的CAR跟踪和改变车道的行为。然后,将混合动作空间参数化为层次结构,从而在动态交通环境中使用二维运动模式训练代理。最后,我们所提出的方法从基于单车的透视和基于流的透视图中在Sumo软件中进行了评估。结果表明,我们的策略可以通过学习适当的动作方案来大大减少能源消耗,而不会中断其他人类驱动的车辆(HDVS)。
translated by 谷歌翻译