变异的计算与差异几何形状结合在一起,作为模型和解决图像处理和计算机视觉问题的工具,在20世纪后期和90年代后期引入了。在这些方向上的广泛作品的开始是由大地测量轮廓(GAC),Beltrami框架,Osher和Sethian的水平设置方法等作品标记的。陈和兽医的作品仅举几例。在许多情况下,这些功能的优化是通过梯度下降方法通过计算Euler-Lagrange方程来完成的。在梯度下降方案中直接使用所得的EL方程会导致非几何,在某些情况下,非感觉方程式。为了获得几何和/或感觉方程式,修改这些EL方程甚至功能本身是成本的。本注释的目的是指出得出EL和梯度下降方程的正确方法,以使所得的梯度下降方程是几何的,并且是有道理的。
translated by 谷歌翻译
我们使用改进的最小路径Eikonal方程向3D图像引入一种新的对象分割方法。该方法利用隐式约束 - 对eikonal的非均匀最小路径的二阶校正 - 防止相邻的最小路径轨迹无法控制地分歧。所提出的修改大大减少了通过最小路径揭示的表面积,允许使用计算的最小路径设置为近似表面的参数线。它还具有与也推导出真正的最小表面eikonal方程的松散连接。
translated by 谷歌翻译
我们提供了概率分布的Riemannian歧管上的经典力学的信息几何公式,该分布是具有双翼连接的仿射歧管。在非参数形式主义中,我们考虑了有限的样本空间上的全套正概率函数,并以统计歧管上的切线和cotangent空间为特定的表达式提供了一种,就希尔伯特束结构而言,我们称之统计捆绑包。在这种情况下,我们使用规范双对的平行传输来计算一维统计模型的速度和加速度,并在束上定义了Lagrangian和Hamiltonian力学的连贯形式主义。最后,在一系列示例中,我们展示了我们的形式主义如何为概率单纯性加速自然梯度动力学提供一个一致的框架,为在优化,游戏理论和神经网络中的直接应用铺平了道路。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
扩散模型是图像产生和似然估计的最新方法。在这项工作中,我们将连续的时间扩散模型推广到任意的Riemannian流形,并得出了可能性估计的变异框架。在计算上,我们提出了计算可能性估计中需要的黎曼分歧的新方法。此外,在概括欧几里得案例时,我们证明,最大化该变异的下限等效于Riemannian得分匹配。从经验上讲,我们证明了Riemannian扩散模型在各种光滑的歧管上的表达能力,例如球体,Tori,双曲线和正交组。我们提出的方法在所有基准测试基准上实现了新的最先进的可能性。
translated by 谷歌翻译
深度神经网络被广泛用于解决多个科学领域的复杂问题,例如语音识别,机器翻译,图像分析。用于研究其理论特性的策略主要依赖于欧几里得的几何形状,但是在过去的几年中,已经开发了基于Riemannian几何形状的新方法。在某些开放问题的动机中,我们研究了歧管之间的特定地图序列,该序列的最后一个歧管配备了riemannian指标。我们研究了序列的其他歧管和某些相关商的结构引起的槽撤回。特别是,我们表明,最终的riemannian度量的回调到该序列的任何歧管是一个退化的riemannian度量,诱导了伪模空间的结构,我们表明,该伪仪的kolmogorov商均产生了平滑的歧管,这是基础的,这是基础,这是基础的基础。特定垂直束的空间。我们研究了此类序列图的理论属性,最终我们着重于实施实际关注神经网络的流形之间的地图,并介绍了本文第一部分中引入的几何框架的某些应用。
translated by 谷歌翻译
在本章中,我们确定了基本的几何结构,这些几何结构是采样,优化,推理和自适应决策问题的基础。基于此识别,我们得出了利用这些几何结构来有效解决这些问题的算法。我们表明,在这些领域中自然出现了广泛的几何理论,范围从测量过程,信息差异,泊松几何和几何整合。具体而言,我们解释了(i)如何利用汉密尔顿系统的符合性几何形状,使我们能够构建(加速)采样和优化方法,(ii)希尔伯特亚空间和Stein操作员的理论提供了一种通用方法来获得可靠的估计器,(iii)(iii)(iii)保留决策的信息几何形状会产生执行主动推理的自适应剂。在整个过程中,我们强调了这些领域之间的丰富联系。例如,推论借鉴了抽样和优化,并且自适应决策通过推断其反事实后果来评估决策。我们的博览会提供了基本思想的概念概述,而不是技术讨论,可以在本文中的参考文献中找到。
translated by 谷歌翻译
本文介绍了一组数字方法,用于在不变(弹性)二阶Sobolev指标的设置中对3D表面进行Riemannian形状分析。更具体地说,我们解决了代表为3D网格的参数化或未参数浸入式表面之间的测量学和地球距离的计算。在此基础上,我们为表面集的统计形状分析开发了工具,包括用于估算Karcher均值并在形状群体上执行切线PCA的方法,以及计算沿表面路径的平行传输。我们提出的方法从根本上依赖于通过使用Varifold Fidelity术语来为地球匹配问题提供轻松的变异配方,这使我们能够在计算未参数化表面之间的地理位置时强制执行重新训练的独立性,同时还可以使我们能够与多用途算法相比,使我们能够将表面与vare表面进行比较。采样或网状结构。重要的是,我们演示了如何扩展放松的变分框架以解决部分观察到的数据。在合成和真实的各种示例中,说明了我们的数值管道的不同好处。
translated by 谷歌翻译
了解随机梯度下降(SGD)的隐式偏见是深度学习的关键挑战之一,尤其是对于过度透明的模型,损失功能的局部最小化$ l $可以形成多种多样的模型。从直觉上讲,SGD $ \ eta $的学习率很小,SGD跟踪梯度下降(GD),直到它接近这种歧管为止,梯度噪声阻止了进一步的收敛。在这样的政权中,Blanc等人。 (2020)证明,带有标签噪声的SGD局部降低了常规术语,损失的清晰度,$ \ mathrm {tr} [\ nabla^2 l] $。当前的论文通过调整Katzenberger(1991)的想法提供了一个总体框架。它原则上允许使用随机微分方程(SDE)描述参数的限制动力学的SGD围绕此歧管的正规化效应(即“隐式偏见”)的正则化效应,这是由损失共同确定的功能和噪声协方差。这产生了一些新的结果:(1)与Blanc等人的局部分析相比,对$ \ eta^{ - 2} $ steps有效的隐性偏差进行了全局分析。 (2020)仅适用于$ \ eta^{ - 1.6} $ steps和(2)允许任意噪声协方差。作为一个应用程序,我们以任意大的初始化显示,标签噪声SGD始终可以逃脱内核制度,并且仅需要$ o(\ kappa \ ln d)$样本用于学习$ \ kappa $ -sparse $ -sparse yroverparame parametrized linearized Linear Modal in $ \ Mathbb {r}^d $(Woodworth等,2020),而GD在内核制度中初始化的GD需要$ \ omega(d)$样本。该上限是最小值的最佳,并改善了先前的$ \ tilde {o}(\ kappa^2)$上限(Haochen等,2020)。
translated by 谷歌翻译
Riemannian优化是解决优化问题的原则框架,其中所需的最佳被限制为光滑的歧管$ \ Mathcal {M} $。在此框架中设计的算法通常需要对歧管的几何描述,该描述通常包括切线空间,缩回和成本函数的梯度。但是,在许多情况下,由于缺乏信息或棘手的性能,只能访问这些元素的子集(或根本没有)。在本文中,我们提出了一种新颖的方法,可以在这种情况下执行近似Riemannian优化,其中约束歧管是$ \ r^{d} $的子手机。至少,我们的方法仅需要一组无噪用的成本函数$(\ x_ {i},y_ {i})\ in {\ mathcal {m}} \ times \ times \ times \ times \ times \ mathbb {r} $和内在的歧管$ \ MATHCAL {M} $的维度。使用样品,并利用歧管-MLS框架(Sober和Levin 2020),我们构建了缺少的组件的近似值,这些组件娱乐可证明的保证并分析其计算成本。如果某些组件通过分析给出(例如,如果成本函数及其梯度明确给出,或者可以计算切线空间),则可以轻松地适应该算法以使用准确的表达式而不是近似值。我们使用我们的方法分析了基于Riemannian梯度的方法的全球收敛性,并从经验上证明了该方法的强度,以及基于类似原理的共轭梯度类型方法。
translated by 谷歌翻译
机器学习中的许多新的发展都与基于梯度的优化方法相连。最近,已经使用变分透视研究了这些方法。这已经开辟了使用几何集成引入变分和辛方法的可能性。特别是,在本文中,我们引入了变分集成商,使我们能够导出不同的优化方法。使用汉密尔顿和拉格朗日 - 德尔尔堡的原则,我们在一对一的对应中获得了两个各自的优化方法的一个家庭,即概括Polyak的厚球和众所周知的Nesterov加速梯度方法,其中第二个是模仿行为的第二个对应首先减少经典动量方法的振荡。然而,由于考虑的系统是明确时间依赖的,因此自主系统的杂交的保存仅在这里发生在纤维上。几个实验举例说明结果。
translated by 谷歌翻译
计算科学和统计推断中的许多应用都需要计算有关具有未知归一化常数的复杂高维分布以及这些常数的估计。在这里,我们开发了一种基于从简单的基本分布生成样品,沿着速度场生成的流量运输的方法,并沿这些流程线执行平均值。这种非平衡重要性采样(NEIS)策略是直接实施的,可用于具有任意目标分布的计算。在理论方面,我们讨论了如何将速度场定制到目标,并建立所提出的估计器是一个完美的估计器,具有零变化。我们还通过将基本分布映射到目标上,通过传输图绘制了NEIS和方法之间的连接。在计算方面,我们展示了如何使用深度学习来代表神经网络,并将其训练为零方差最佳。这些结果在高维示例上进行了数值说明,我们表明训练速度场可以将NEIS估计量的方差降低至6个数量级,而不是Vanilla估计量。我们还表明,NEIS在这些示例上的表现要比NEAL的退火重要性采样(AIS)更好。
translated by 谷歌翻译
Riemannian geometry provides powerful tools to explore the latent space of generative models while preserving the inherent structure of the data manifold. Lengths, energies and volume measures can be derived from a pullback metric, defined through the immersion that maps the latent space to the data space. With this in mind, most generative models are stochastic, and so is the pullback metric. Manipulating stochastic objects is strenuous in practice. In order to perform operations such as interpolations, or measuring the distance between data points, we need a deterministic approximation of the pullback metric. In this work, we are defining a new metric as the expected length derived from the stochastic pullback metric. We show this metric is Finslerian, and we compare it with the expected pullback metric. In high dimensions, we show that the metrics converge to each other at a rate of $\mathcal{O}\left(\frac{1}{D}\right)$.
translated by 谷歌翻译
在分析参数统计模型时,有用的方法包括在几何上建模参数空间。然而,即使对于统计混合物或随机深度神经网络等非常简单且常用的分层模型,歧管的平滑度呈呈现在参数空间中的非平滑邻域的奇异点。这些奇异模型已经在学习动态的背景下进行了分析,其中奇点可以充当学习轨迹上的吸引子,因此,对模型的收敛速度产生负面影响。我们提出了一种通过使用Stratifolds,来自代数拓扑的概念来规避奇点引起的问题的一般方法,以正式模拟奇异参数空间。我们使用特定的Stratifolds配备了分辨率的特定方法来构造奇异空间的平滑歧管近似。我们经验证明,使用(自然)梯度下降在平滑歧管近似而不是奇异空间允许我们避免吸引子行为,从而提高学习中的收敛速度。
translated by 谷歌翻译
在以前的工作中,我们提出了一种学习深层神经网络的几何框架,作为歧管之间的地图序列,采用奇异的黎曼几何形状。在本文中,我们介绍了该框架的应用,提出了一种建立输入点的等价等级的方法:将这种类定义为输入歧管上的点上的点,由神经网络映射到相同的输出。换句话说,我们在输入空间中构建输出歧管中的点的预测。特别是。我们在N维实际空间的神经网络映射到(N-1) - 二维实际空间的情况下,我们专注于简单,我们提出了一种算法,允许构建位于同一类等效等级的一组点。这种方法导致两个主要应用:新的合成数据的产生,它可以对分类器如何通过输入数据的小扰动来混淆一些洞察(例如,分类为包含奇瓦瓦狗的图像)。此外,对于从2D到1D实际空间的神经网络,我们还讨论了如何找到实际线路的封闭间隔的疑望。我们还提供了一些具有训练的神经网络的数值实验,以执行非线性回归任务,包括二进制分类器的情况。
translated by 谷歌翻译
In this paper, we propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by gradient. We minimize an energy which can be seen as a particular case of the minimal partition problem. In the level set formulation, the problem becomes a "mean-curvature flow"-like evolving the active contour, which will stop on the desired boundary. However, the stopping term does not depend on the gradient of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. We will give a numerical algorithm using finite differences. Finally, we will present various experimental results and in particular some examples for which the classical snakes methods based on the gradient are not applicable. Also, the initial curve can be anywhere in the image, and interior contours are automatically detected.
translated by 谷歌翻译
在形状分析中,基本问题之一是在计算这些形状之间的(地球)距离之前对齐曲线或表面。为了找到最佳的重新训练,实现这种比对的是一项计算要求的任务,它导致了在差异组上的优化问题。在本文中,我们通过组成基本差异性来解决近似问题,构建了定向性扩散的近似值。我们提出了一种在Pytorch中实施的实用算法,该算法既适用于未参考的曲线和表面。我们得出了通用近似结果,并获得了获得的差异形态成分的Lipschitz常数的边界。
translated by 谷歌翻译
我们分析了通过梯度流通过自洽动力场理论训练的无限宽度神经网络中的特征学习。我们构建了确定性动力学阶参数的集合,该参数是内部产物内核,用于在成对的时间点中,每一层中隐藏的单位激活和梯度,从而减少了通过训练对网络活动的描述。这些内核顺序参数共同定义了隐藏层激活分布,神经切线核的演变以及因此输出预测。我们表明,现场理论推导恢复了从Yang和Hu(2021)获得张量程序的无限宽度特征学习网络的递归随机过程。对于深线性网络,这些内核满足一组代数矩阵方程。对于非线性网络,我们提供了一个交替的采样过程,以求助于内核顺序参数。我们提供了与各种近似方案的自洽解决方案的比较描述。最后,我们提供了更现实的设置中的实验,这些实验表明,在CIFAR分类任务上,在不同宽度上保留了CNN的CNN的损耗和内核动力学。
translated by 谷歌翻译
我们研究了可以写入欧几里得凸函数的差异的地质凸(G-Convex)问题。这种结构出现在统计和机器学习中的几个优化问题中,例如,用于矩阵缩放,协方差的M估计器和Brascamp-Lieb不平等。我们的工作提供有效的算法,一方面利用G-Convexity来确保全球最优性以及保证迭代复杂性。另一方面,拆分结构使我们能够开发欧几里得最小化算法,这些算法可以帮助我们绕开计算昂贵的Riemannian操作(例如指数型地图和并行运输)的需求。我们通过将其专门针对机器学习文献中以前研究过的一些具体优化问题来说明我们的结果。最终,我们希望我们的工作有助于激励人们更广泛地寻找混合的欧几罗南优化算法。
translated by 谷歌翻译
Cohen等人的深度学习实验。 [2021]使用确定性梯度下降(GD)显示学习率(LR)和清晰度(即Hessian最大的特征值)的稳定边缘(EOS)阶段不再像传统优化一样行为。清晰度稳定在$ 2/$ LR的左右,并且在迭代中损失不断上下,但仍有整体下降趋势。当前的论文数学分析了EOS阶段中隐式正则化的新机制,因此,由于非平滑损失景观而导致的GD更新沿着最小损失的多种流量进行了一些确定性流程发展。这与许多先前关于隐式偏差依靠无限更新或梯度中的噪声的结果相反。正式地,对于具有某些规律性条件的任何平滑函数$ l $,对于(1)标准化的GD,即具有不同的lr $ \ eta_t = \ frac {\ eta} {||的GD证明了此效果。 \ nabla l(x(t))||} $和损失$ l $; (2)具有常数LR和损失$ \ sqrt {l- \ min_x l(x)} $的GD。两者都可以证明进入稳定性的边缘,在歧管上相关的流量最小化$ \ lambda_ {1}(\ nabla^2 l)$。一项实验研究证实了上述理论结果。
translated by 谷歌翻译