机器学习中的许多新的发展都与基于梯度的优化方法相连。最近,已经使用变分透视研究了这些方法。这已经开辟了使用几何集成引入变分和辛方法的可能性。特别是,在本文中,我们引入了变分集成商,使我们能够导出不同的优化方法。使用汉密尔顿和拉格朗日 - 德尔尔堡的原则,我们在一对一的对应中获得了两个各自的优化方法的一个家庭,即概括Polyak的厚球和众所周知的Nesterov加速梯度方法,其中第二个是模仿行为的第二个对应首先减少经典动量方法的振荡。然而,由于考虑的系统是明确时间依赖的,因此自主系统的杂交的保存仅在这里发生在纤维上。几个实验举例说明结果。
translated by 谷歌翻译
我们提供了概率分布的Riemannian歧管上的经典力学的信息几何公式,该分布是具有双翼连接的仿射歧管。在非参数形式主义中,我们考虑了有限的样本空间上的全套正概率函数,并以统计歧管上的切线和cotangent空间为特定的表达式提供了一种,就希尔伯特束结构而言,我们称之统计捆绑包。在这种情况下,我们使用规范双对的平行传输来计算一维统计模型的速度和加速度,并在束上定义了Lagrangian和Hamiltonian力学的连贯形式主义。最后,在一系列示例中,我们展示了我们的形式主义如何为概率单纯性加速自然梯度动力学提供一个一致的框架,为在优化,游戏理论和神经网络中的直接应用铺平了道路。
translated by 谷歌翻译
We introduce a class of first-order methods for smooth constrained optimization that are based on an analogy to non-smooth dynamical systems. Two distinctive features of our approach are that (i) projections or optimizations over the entire feasible set are avoided, in stark contrast to projected gradient methods or the Frank-Wolfe method, and (ii) iterates are allowed to become infeasible, which differs from active set or feasible direction methods, where the descent motion stops as soon as a new constraint is encountered. The resulting algorithmic procedure is simple to implement even when constraints are nonlinear, and is suitable for large-scale constrained optimization problems in which the feasible set fails to have a simple structure. The key underlying idea is that constraints are expressed in terms of velocities instead of positions, which has the algorithmic consequence that optimizations over feasible sets at each iteration are replaced with optimizations over local, sparse convex approximations. In particular, this means that at each iteration only constraints that are violated are taken into account. The result is a simplified suite of algorithms and an expanded range of possible applications in machine learning.
translated by 谷歌翻译
Recently, there has been great interest in connections between continuous-time dynamical systems and optimization algorithms, notably in the context of accelerated methods for smooth and unconstrained problems. In this paper we extend this perspective to nonsmooth and constrained problems by obtaining differential inclusions associated to novel accelerated variants of the alternating direction method of multipliers (ADMM). Through a Lyapunov analysis, we derive rates of convergence for these dynamical systems in different settings that illustrate an interesting tradeoff between decaying versus constant damping strategies. We also obtain perturbed equations capturing fine-grained details of these methods, which have improved stability and preserve the leading order convergence rates.
translated by 谷歌翻译
在本章中,我们确定了基本的几何结构,这些几何结构是采样,优化,推理和自适应决策问题的基础。基于此识别,我们得出了利用这些几何结构来有效解决这些问题的算法。我们表明,在这些领域中自然出现了广泛的几何理论,范围从测量过程,信息差异,泊松几何和几何整合。具体而言,我们解释了(i)如何利用汉密尔顿系统的符合性几何形状,使我们能够构建(加速)采样和优化方法,(ii)希尔伯特亚空间和Stein操作员的理论提供了一种通用方法来获得可靠的估计器,(iii)(iii)(iii)保留决策的信息几何形状会产生执行主动推理的自适应剂。在整个过程中,我们强调了这些领域之间的丰富联系。例如,推论借鉴了抽样和优化,并且自适应决策通过推断其反事实后果来评估决策。我们的博览会提供了基本思想的概念概述,而不是技术讨论,可以在本文中的参考文献中找到。
translated by 谷歌翻译
在自然界中,对称治理规律,而对称打破纹理。在人工神经网络中,对称性是一种中央设计原则,可以在世界上有效地捕获规律,但对称性破裂的作用并不充分理解。在这里,我们开发了一个理论框架,用于研究神经网络中的“学习动态几何”,并揭示了现代神经网络效率和稳定性的明确对称性的关键机制。为了构建这种理解,我们使用连续时间拉格朗日制剂模拟梯度下降的离散学习动态,其中学习规则对应于动能,并且损耗函数对应于势能。然后,我们识别“动力学对称性破坏”(KSB),当动能明确地破坏潜在功能的对称性时的条件。我们概括了物理中已知的定理,以考虑KSB,并导致Noether费用的结果:“Noether的学习动态”(NLD)。最后,我们将NLD应用于具有归一化层的神经网络,并揭示了KSB如何引入“隐式自适应优化”的机制,建立由归一化层和RMSProp引起的学习动态之间的类比。总体而言,通过拉格朗日力学的镜头,我们建立了一个理论基础,以发现神经网络的学习动态的几何设计原则。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
深度神经网络和其他现代机器学习模型的培训通常包括解决高维且受大规模数据约束的非凸优化问题。在这里,基于动量的随机优化算法在近年来变得尤其流行。随机性来自数据亚采样,从而降低了计算成本。此外,动量和随机性都应该有助于算法克服当地的最小化器,并希望在全球范围内融合。从理论上讲,这种随机性和动量的结合被糟糕地理解。在这项工作中,我们建议并分析具有动量的随机梯度下降的连续时间模型。该模型是一个分段确定的马尔可夫过程,它通过阻尼不足的动态系统和通过动力学系统的随机切换来代表粒子运动。在我们的分析中,我们研究了长期限制,子采样到无填充采样极限以及动量到非摩托车的限制。我们对随着时间的推移降低动量的情况特别感兴趣:直觉上,动量有助于在算法的初始阶段克服局部最小值,但禁止后来快速收敛到全球最小化器。在凸度的假设下,当降低随时间的动量时,我们显示了动力学系统与全局最小化器的收敛性,并让子采样率转移到无穷大。然后,我们提出了一个稳定的,合成的离散方案,以从我们的连续时间动力学系统中构造算法。在数值实验中,我们研究了我们在凸面和非凸测试问题中的离散方案。此外,我们训练卷积神经网络解决CIFAR-10图像分类问题。在这里,与动量相比,我们的算法与随机梯度下降相比达到了竞争性结果。
translated by 谷歌翻译
我们为Nesterov在概率空间中加速的梯度流提供了一个框架,以设计有效的平均田间马尔可夫链蒙特卡洛(MCMC)贝叶斯逆问题算法。在这里,考虑了四个信息指标的示例,包括Fisher-Rao Metric,Wasserstein-2 Metric,Kalman-Wasserstein Metric和Stein Metric。对于Fisher-Rao和Wasserstein-2指标,我们都证明了加速梯度流的收敛性。在实施中,我们建议使用重新启动技术的Wasserstein-2,Kalman-Wasseintein和Stein加速梯度流的抽样效率离散算法。我们还制定了一种内核带宽选择方法,该方法从布朗动物样品中学习了密度对数的梯度。与最先进的算法相比,包括贝叶斯逻辑回归和贝叶斯神经网络在内的数值实验显示了所提出方法的强度。
translated by 谷歌翻译
Incorporating prior knowledge of physics laws and structural properties of dynamical systems into the design of deep learning architectures has proven to be a powerful technique for improving their computational efficiency and generalization capacity. Learning accurate models of robot dynamics is critical for safe and stable control. Autonomous mobile robots, including wheeled, aerial, and underwater vehicles, can be modeled as controlled Lagrangian or Hamiltonian rigid-body systems evolving on matrix Lie groups. In this paper, we introduce a new structure-preserving deep learning architecture, the Lie group Forced Variational Integrator Network (LieFVIN), capable of learning controlled Lagrangian or Hamiltonian dynamics on Lie groups, either from position-velocity or position-only data. By design, LieFVINs preserve both the Lie group structure on which the dynamics evolve and the symplectic structure underlying the Hamiltonian or Lagrangian systems of interest. The proposed architecture learns surrogate discrete-time flow maps instead of surrogate vector fields, which allows better and faster prediction without requiring the use of a numerical integrator, neural ODE, or adjoint techniques. Furthermore, the learnt discrete-time dynamics can be combined seamlessly with computationally scalable discrete-time (optimal) control strategies.
translated by 谷歌翻译
最近,对具有神经网络的物理系统建模和计算的兴趣越来越多。在古典力学中,哈密顿系统是一种优雅而紧凑的形式主义,该动力学由一个标量功能,哈密顿量完全决定。解决方案轨迹通常受到约束,以在线性矢量空间的子序列上进化。在这项工作中,我们提出了新的方法,以准确地逼近其解决方案的示例数据信息的约束机械系统的哈密顿功能。我们通过使用明确的谎言组集成商和其他经典方案来关注学习策略中约束的重要性。
translated by 谷歌翻译
顺序凸编程(SCP)最近已获得了解决最佳控制问题的有效方法,并已成功应用于多个不同的领域。但是,SCP的理论分析受到了相对有限的关注,并且通常仅限于离散时间配方。在本文中,我们介绍了对连续时间最佳控制问题的相当一般类别的SCP程序的统一分析。除了在连续时间环境中保证收敛的推导外,我们的分析还揭示了两个新的数值和实际见解。首先,我们展示了如何更轻松地考虑歧管型约束,这是对机械系统的最佳控制的定义特征。其次,我们展示了如何通过从间接最佳控制中注入技术来利用我们的理论分析来加速基于SCP的最佳控制方法。
translated by 谷歌翻译
本文评价用机器学习问题的数值优化方法。由于机器学习模型是高度参数化的,我们专注于适合高维优化的方法。我们在二次模型上构建直觉,以确定哪种方法适用于非凸优化,并在凸函数上开发用于这种方法的凸起函数。随着随机梯度下降和动量方法的这种理论基础,我们试图解释为什么机器学习领域通常使用的方法非常成功。除了解释成功的启发式之外,最后一章还提供了对更多理论方法的广泛审查,这在实践中并不像惯例。所以在某些情况下,这项工作试图回答这个问题:为什么默认值中包含的默认TensorFlow优化器?
translated by 谷歌翻译
我们在强烈混合(混乱)方面基于能源持续的哈密顿动力学进行了优化的新框架,并在分析和数值上建立其关键特性。该原型是对出生式动力学的离散化,取决于目标函数,其平方相对速度限制。这类无摩擦,节能优化器毫不动摇地进行,直到自然放慢速度在最小的损失附近,这主要是系统的相位空间体积。我们从对动力台球等混乱系统的研究构建,我们制定了一种特定的算法,在机器学习和解决PDE解决任务(包括概括)方面具有良好的性能。它不能以高的局部最低限度停止,这是非凸损失功能的优势,并且比浅谷中的GD+动量更快。
translated by 谷歌翻译
几种广泛使用的一阶马鞍点优化方法将衍生天然衍生时的梯度下降成本(GDA)方法的相同连续时间常分等式(ODE)。然而,即使在简单的双线性游戏上,它们的收敛性也很差异。我们使用一种来自流体动力学的技术,称为高分辨率微分方程(HRDE)来设计几个骑马点优化方法的杂散。在双线性游戏中,派生HRDE的收敛性属性对应于起始离散方法的收敛性。使用这些技术,我们表明乐观梯度下降的HRDE具有最后迭代单调变分不等式的迭代收敛。据我们所知,这是第一个连续时间动态,用于收敛此类常规设置。此外,我们提供了ogda方法的最佳迭代收敛的速率,仅依靠单调运营商的一阶平滑度。
translated by 谷歌翻译
In this thesis, we consider two simple but typical control problems and apply deep reinforcement learning to them, i.e., to cool and control a particle which is subject to continuous position measurement in a one-dimensional quadratic potential or in a quartic potential. We compare the performance of reinforcement learning control and conventional control strategies on the two problems, and show that the reinforcement learning achieves a performance comparable to the optimal control for the quadratic case, and outperforms conventional control strategies for the quartic case for which the optimal control strategy is unknown. To our knowledge, this is the first time deep reinforcement learning is applied to quantum control problems in continuous real space. Our research demonstrates that deep reinforcement learning can be used to control a stochastic quantum system in real space effectively as a measurement-feedback closed-loop controller, and our research also shows the ability of AI to discover new control strategies and properties of the quantum systems that are not well understood, and we can gain insights into these problems by learning from the AI, which opens up a new regime for scientific research.
translated by 谷歌翻译
我们重新审视汉密尔顿随机微分方程(SDES)的理论属性,为贝叶斯后部采样,我们研究了来自数值SDE仿真的两种类型的误差:在数据附带的上下文中,离散化误差和由于噪声渐变估计而导致的错误。我们的主要结果是对迷你批次通过差分操作员分裂镜片影响的新颖分析,修改了先前的文献结果。Hamiltonian SDE的随机分量与梯度噪声分离,我们没有常规假设。这导致识别收敛瓶颈:在考虑迷你批次时,最佳可实现的错误率是$ \ mathcal {o}(\ eta ^ 2)$,带有$ \ eta $是集成器步长。我们的理论结果得到了贝叶斯神经网络各种回归和分类任务的实证研究。
translated by 谷歌翻译
It is well known that conservative mechanical systems exhibit local oscillatory behaviours due to their elastic and gravitational potentials, which completely characterise these periodic motions together with the inertial properties of the system. The classification of these periodic behaviours and their geometric characterisation are in an on-going secular debate, which recently led to the so-called eigenmanifold theory. The eigenmanifold characterises nonlinear oscillations as a generalisation of linear eigenspaces. With the motivation of performing periodic tasks efficiently, we use tools coming from this theory to construct an optimization problem aimed at inducing desired closed-loop oscillations through a state feedback law. We solve the constructed optimization problem via gradient-descent methods involving neural networks. Extensive simulations show the validity of the approach.
translated by 谷歌翻译
最近有兴趣的兴趣在教师学生环境中的各种普遍性线性估计问题中的渐近重建性能研究,特别是对于I.I.D标准正常矩阵的案例。在这里,我们超越这些矩阵,并证明了具有具有任意界限频谱的旋转不变数据矩阵的凸遍的线性模型的重建性能的分析公式,严格地确认使用来自统计物理的副本衍生的猜想。该公式包括许多问题,例如压缩感测或稀疏物流分类。通过利用消息通过算法和迭代的统计特性来实现证明,允许表征估计器的渐近实证分布。我们的证据是基于构建Oracle多层向量近似消息传递算法的会聚序列的构建,其中通过检查等效动态系统的稳定性来完成收敛分析。我们说明了我们对主流学习方法的数值示例的要求,例如稀疏的逻辑回归和线性支持矢量分类器,显示中等大小模拟和渐近预测之间的良好一致性。
translated by 谷歌翻译
对应用机器学习来研究动态系统有一波兴趣。特别地,已经应用神经网络来解决运动方程,因此追踪系统的演变。与神经网络和机器学习的其他应用相反,动态系统 - 根据其潜在的对称 - 具有诸如能量,动量和角动量的不变性。传统的数值迭代方法通常违反这些保护法,在时间上传播误差,并降低方法的可预测性。我们介绍了一个汉密尔顿神经网络,用于解决控制动态系统的微分方程。这种无监督的模型是学习解决方案,可以相同地满足哈密尔顿方程,因此哈密尔顿方程式满足。一旦优化了,所提出的架构被认为是一种杂项单元,因为引入了高效的参数的解决方案。另外,通过共享网络参数并选择适当的激活函数的选择大大提高了网络的可预测性。派生错误分析,并指出数值误差取决于整体网络性能。然后采用辛结构来解决非线性振荡器的方程和混沌HENON-HENEL动态系统。在两个系统中,杂项欧拉集成商需要两个订单比HAMILTONIAN网络更多的评估点,以便在预测的相空间轨迹中获得相同的数值误差顺序。
translated by 谷歌翻译