电动汽车路线问题(EVRP)引起了研究人员和工业家的极大兴趣,试图从燃油汽车转变为更健康,更高效的电动汽车(EVS)。虽然EVRP似乎与传统的车辆路线问题(VRP)没有太大不同,诸如巡航时间有限,充电时间和电动汽车充电设施的可用性有限的挑战使一切都不同。以前的工作针对物流和交付相关的解决方案,其中均匀的商业电动汽车舰队在进行多次停止后必须返回初始点。在相对的方面,我们解决了个人电动汽车路由问题,并为长期原产地(OD)旅行提供了最佳的单车路线。我们执行多目标优化 - 最大程度地减少了总行程时间和充电累积成本。此外,我们将外部和现实生活中的要素纳入了充电站的交通,到达充电站的弯路距离以及不同充电站的电力成本可变成本。特别是,我们定义了多目标混合整数非线性编程(MINLP)问题,并使用$ \ epsilon $ -constraint算法获得可行的解决方案。我们进一步实施了元热疗法技术,例如遗传算法(GA)和粒子群优化(PSO),以获得最佳的途径,因此是客观值。该实验是针对多个自我生成的数据实例进行的,因此进行了比较。
translated by 谷歌翻译
在过去的几十年中,经典的车辆路由问题(VRP),即为车辆分配一组订单并规划他们的路线已经被密集研究。仅作为车辆的订单分配和他们的路线已经是一个NP完整的问题,因此在实践中的应用通常无法考虑在现实世界应用中应用的约束和限制,所谓的富VRP所谓的富VRP(RVRP)并且仅限于单一方面。在这项工作中,我们融入了主要的相关真实限制和要求。我们提出了一种两级策略和时间线窗口和暂停时间的时间线算法,并将遗传算法(GA)和蚁群优化(ACO)单独应用于问题以找到最佳解决方案。我们对四种不同问题实例的评估,针对四个最先进的算法表明,我们的方法在合理的时间内处理所有给定的约束。
translated by 谷歌翻译
我们研究了合作航空航天车辆路线应用程序的资源分配问题,其中多个无人驾驶汽车(UAV)电池容量有限和多个无人接地车辆(UGV),这也可以充当移动充电站,需要共同实现诸如持续监视一组要点之类的任务。由于无人机的电池能力有限,他们有时必须偏离任务才能与UGV进行集合并得到充电。每个UGV一次可以一次提供有限数量的无人机。与确定性多机器人计划的先前工作相反,我们考虑了无人机能源消耗的随机性所带来的挑战。我们有兴趣找到无人机的最佳充电时间表,从而最大程度地减少了旅行成本,并且在计划范围内没有任何无人机在计划范围内取消收费的可能性大于用户定义的公差。我们将此问题({风险意识召集集合问题(RRRP))}作为整数线性程序(ILP),其中匹配的约束捕获资源可用性约束,而背包约束捕获了成功概率约束。我们提出了一种求解RRRP的双晶格近似算法。在一个持续监测任务的背景下,我们证明了我们的制定和算法的有效性。
translated by 谷歌翻译
疏散计划是灾难管理的关键部分,其目标是将人员搬迁到安全和减少伤亡。每个疏散计划都有两个基本组件:路由和调度。但是,这两个组件与目标的联合优化,例如最大程度地减少平均疏散时间或疏散完成时间,这是一个计算问题上的问题。为了解决它,我们提出了MIP-LNS,这是一种可扩展的优化方法,将启发式搜索与数学优化结合在一起,并可以优化各种目标函数。我们使用来自德克萨斯州休斯敦的哈里斯县的现实世界道路网络和人口数据,并应用MIP-LNS来查找该地区的疏散路线和时间表。我们表明,在给定的时间限制内,我们提出的方法在平均疏散时间,疏散完成时间和解决方案的最佳保证方面找到了比现有方法更好的解决方案。我们在研究区域进行基于代理的疏散模拟,以证明解决方案的功效和鲁棒性。我们表明,即使撤离人员在一定程度上偏离了建议的时间表,我们的规定疏散计划仍然有效。我们还研究了疏散计划如何受到道路故障的影响。我们的结果表明,MIP-LN可以使用有关道路估计截止日期的信息,以成功,方便地撤离更多人,以提出更好的疏散计划。
translated by 谷歌翻译
在带有电动车队的乘车系统中,充电是一个复杂的决策过程。大多数电动汽车(EV)出租车服务要求驾驶员做出利己主义决定,从而导致分散的临时充电策略。车辆之间通常缺乏或不共享移动性系统的当前状态,因此无法做出最佳的决定。大多数现有方法都不将时间,位置和持续时间结合到全面的控制算法中,也不适合实时操作。因此,我们提出了一种实时预测性充电方法,用于使用一个名为“闲置时间开发(ITX)”的单个操作员进行乘车服务,该方法预测了车辆闲置并利用这些时期来收获能量的时期。它依靠图形卷积网络和线性分配算法来设计最佳的车辆和充电站配对,以最大程度地提高利用的空闲时间。我们通过对纽约市现实世界数据集的广泛模拟研究评估了我们的方法。结果表明,就货币奖励功能而言,ITX的表现优于所有基线方法至少提高5%(相当于6,000个车辆操作的$ 70,000),该奖励奖励功能的建模旨在复制现实世界中乘车系统的盈利能力。此外,与基线方法相比,ITX可以将延迟至少减少4.68%,并且通常通过促进顾客在整个车队中更好地传播乘客的舒适度。我们的结果还表明,ITX使车辆能够在白天收获能量,稳定电池水平,并增加需求意外激增的弹性。最后,与表现最佳的基线策略相比,峰值负载减少了17.39%,这使网格操作员受益,并为更可持续的电网使用铺平了道路。
translated by 谷歌翻译
由于货运车数量的增加,在城市地区采用了电动汽车(EV),以减少环境污染和全球变暖。但是,路由最后一英里物流的轨迹仍在继续影响社会和经济可持续性时仍然存在缺陷。因此,在本文中,提出了一种称为超高神性自适应模拟退火的超增压性(HH)方法,并提出了增强学习(HHASA $ _ {RL} $)。它由多军匪徒方法和自适应模拟退火(SA)元启示术算法组成,用于解决该问题称为电容的电动汽车路由问题(CEVRP)。由于充电站数量有限和电动汽车的旅行范围,因此电动汽车必须提前为电池充电时刻,并减少旅行时间和成本。 HH实施的HH改善了多个最低最低知名解决方案,并为IEEE WCCI2020竞赛的拟议基准测试获得了一些高维实例的最佳平均值。
translated by 谷歌翻译
物流运营商最近提出了一项技术,可以帮助降低城市货运分销中的交通拥堵和运营成本,最近提出了移动包裹储物柜(MPLS)。鉴于他们能够在整个部署领域搬迁,因此他们具有提高客户可访问性和便利性的潜力。在这项研究中,我们制定了移动包裹储物柜问题(MPLP),这是位置路由问题(LRP)的特殊情况,该案例确定了整天MPL的最佳中途停留位置以及计划相应的交付路线。开发了基于混合Q学习网络的方法(HQM),以解决所得大问题实例的计算复杂性,同时逃脱了本地Optima。此外,HQM与全球和局部搜索机制集成在一起,以解决经典强化学习(RL)方法所面临的探索和剥削困境。我们检查了HQM在不同问题大小(最多200个节点)下的性能,并根据遗传算法(GA)进行了基准测试。我们的结果表明,HQM获得的平均奖励比GA高1.96倍,这表明HQM具有更好的优化能力。最后,我们确定有助于车队规模要求,旅行距离和服务延迟的关键因素。我们的发现概述了MPL的效率主要取决于时间窗口的长度和MPL中断的部署。
translated by 谷歌翻译
我们考虑了提高柱生成效率(CG)方法的方法,以解决车辆路由问题。我们介绍了CG配方中常用的NG-Route松弛度和降低状态空间松弛(DSSR)的替代/补充,我们引入了局部区域(LA)路线。 LA路线是NG路由的子集和基本路线的超级集合。通常,CG的定价阶段必须产生基本路线,这些路线是没有重复客户的路线,使用可能在计算上昂贵的流程。非元素路线至少访问至少一个客户,创建一个周期。 LA路线以允许有效定价的方式放松成为基本途径的约束。从NG-Route放松方面,最好理解LA路线。 NG路由是允许在空间中具有非定位循环的路线。这意味着周期中至少有一个中间客户(称为断路器)必须考虑到周期中的起始客户在空间上远离。使用一组特殊索引来描述LA路线,该特殊索引与从开始到路线尽头的路线上的客户相对应。 LA路线的松弛进一步限制了一组允许的周期,除了强制执行断路器必须位于特殊索引中,该循环均超出了NG路由,其中​​一组特殊索引被递归地定义为如下。该路线中的第一个特殊索引是索引1,这意味着它与路线中的第一个客户关联。 K'th特殊索引对应于K-1第三个特殊索引之后的第一个客户,该索引并非被认为是(在空间上被认为是远离K-1'TEXPATEX的客户)的邻居。我们证明,与标准DSSR相比,LA路线松弛可以显着提高定价的计算速度。
translated by 谷歌翻译
双目标多模式共享问题(BIO-MMCP)的目的是确定旅行的最佳运输分配方式,并安排可用汽车和用户的路线,同时最大程度地减少成本并最大程度地提高用户满意度。我们从以用户为中心的角度研究了生物MMCP。由于用户满意度是共享移动性系统中的关键方面,因此我们在第二个目标中考虑用户偏好。用户可以在一天中的不同时间选择并对其首选的运输方式进行排名。通过这种方式,我们可以解释整个计划范围内的不同交通状况。我们研究问题的不同变体。在基本问题中,用户必须实现的任务顺序是预先固定的,旅行时间以及偏好在计划范围上是恒定的。在变体2中,引入了与时间有关的旅行时间和偏好。在变体3中,我们在允许其他路由决策时检查了挑战。变体4集成了变体2和3。在最后一个变体中,我们开发了一种分支和切割算法,该算法嵌入了两个双向目标框架中,即$ \ epsilon $ -constraint方法和一种加权二进制搜索方法。计算实验表明,分支和切割算法的表现优于MIP公式,我们讨论了沿Pareto边境的更改解决方案。
translated by 谷歌翻译
我们介绍了多模式的汽车和乘车共享问题(MMCRP),其中使用一台汽车来涵盖一组乘车请求,同时将发现的请求分配给其他运输方式(MOT)。汽车的路线由一次或多个旅行组成。每次旅行都必须具有特定但不明的驱动程序,以仓库开始,然后以(可能不同的)仓库结束。即使两个骑行没有相同的起源和/或目的地,也允许在用户之间共享骑行。用户始终可以根据各个首选项列表使用其他运输方式。该问题可以作为车辆调度问题提出。为了解决该问题,构建了一个辅助图,在该图中,每次旅行在仓库中的启动和结尾,并覆盖可能的乘车共享,以时空图中的形式建模为弧。我们提出了一种基于列生成的两层分解算法,其中主问题可确保最多只能涵盖每个请求,并且定价问题通过在时间 - 时间中解决一种最短路径问题来生成新的有希望的路线空间网络。报告了基于现实实例的计算实验。基准实例基于奥地利维也纳的人口,空间和经济数据。我们通过在合理时间内基于列生成的方法来解决大型实例,并进一步研究了各种精确和启发式定价方案。
translated by 谷歌翻译
二进制矩阵优化通常是在现实世界中出现的,例如多微晶网络结构设计问题(MGNSDP),即在某些约束下最小化电源线的总长度。为这些问题找到全球最佳解决方案面临着一个巨大的挑战,因为此类问题可能是大规模,稀疏和多模式。传统的线性编程是耗时的,无法解决非线性问题。为了解决这个问题,提出了一种新颖的可行性规则基于差异进化算法,称为LBMDE。具体来说,首先提出了一种通用启发式溶液初始化方法来生成高质量的解决方案。然后,引入了基于二进制的DE操作员以生产后代。为了处理约束,我们提出了改进的基于可行性规则的环境选择策略。通过一组基准问题来检查LBMDE的性能和搜索行为。
translated by 谷歌翻译
无人驾驶飞机(UAV)是飞机,其飞行可以完全自主,而无需任何人为干预。自然灾害管理是可以使用无人机的最有用和最有前途的领域之一。在本文中,我们专注于紧急情况,并提出使用无人机机队,以帮助营救团队个性化受影响区域内需要帮助的人。我们将这种情况建模为原始图理论问题,称为多部门多行车路由问题,总完成时间最小化(MDMT-VRP-TCT);我们经历了一些与之相似的文献研究中已经研究的问题,并突出了差异,提出了作为MILP作为MILP的数学表述,设计了一种数学框架来快速解决大型实例,并在实验中测试其性能。除了提出的应用程序之外,我们的解决方案在任何情况下都必须解决多部多行车路由问题的任何情况。
translated by 谷歌翻译
In the last years, there has been a great interest in machine-learning-based heuristics for solving NP-hard combinatorial optimization problems. The developed methods have shown potential on many optimization problems. In this paper, we present a learned heuristic for the reoptimization of a problem after a minor change in its data. We focus on the case of the capacited vehicle routing problem with static clients (i.e., same client locations) and changed demands. Given the edges of an original solution, the goal is to predict and fix the ones that have a high chance of remaining in an optimal solution after a change of client demands. This partial prediction of the solution reduces the complexity of the problem and speeds up its resolution, while yielding a good quality solution. The proposed approach resulted in solutions with an optimality gap ranging from 0\% to 1.7\% on different benchmark instances within a reasonable computing time.
translated by 谷歌翻译
路由问题是许多实际应用的一类组合问题。最近,已经提出了端到端的深度学习方法,以了解这些问题的近似解决方案启发式。相比之下,经典动态编程(DP)算法保证最佳解决方案,但与问题大小严重规模。我们提出了深入的政策动态规划(DPDP),旨在将学习神经启发式的优势与DP算法结合起来。 DPDP优先确定并限制DP状态空间,使用来自深度神经网络的策略进行培训,以预测示例解决方案的边缘。我们在旅行推销员问题(TSP)上评估我们的框架,车辆路由问题(VRP)和TSP与时间窗口(TSPTW),并表明神经政策提高了(限制性)DP算法的性能,使其对强有力的替代品具有竞争力如LKH,同时也优于求解TSP,VRP和TSPTWS的大多数其他“神经方法”,其中包含100个节点。
translated by 谷歌翻译
在本文中,我们研究了通过优化的流量路由的路径增加对运输网络的影响。特别是,我们研究了总旅行时间的行为,并考虑了自我利益的路由范式,例如用户平衡(UE)路由以及合作范式,例如经典多商品(MC)网络流量和系统最佳(因此)路由。我们提供了一个正式的框架,用于通过迭代路径添加设计运输网络,引入跨越树和跳跃路径图的概念。使用此形式化,我们证明了运输网络设计的目标函数的多个属性。由于基础路由问题是NP-HARD,因此我们研究了提供近似算法设计保证的属性。首先,尽管Braess的悖论表明,对于在自私路由(UE)下的路径添加(UE)方面,总旅行时间并不是单调的非侵扰,但我们证明,相反,单调性具有合作路由(MC等)。该结果具有重要的含义,即合作社可以充分利用冗余基础设施。其次,我们通过反例证证明,直观的语句``在传输网络中添加路径始终赋予用户更大或平等的好处,而不是将其添加到该网络的超集中'是错误的。换句话说,我们证明,对于所有研究的路由公式,相对于路径添加而言,总旅行时间不是超模型。尽管这种违反直觉结果为算法设计带来了硬度属性,但我们提供了特定的实例,而相反,超模型的属性则具有。我们关于相对于路径增加的总旅行时间的单调性和超模样的研究提供了正式的证明和场景,构成了运输网络设计师的重要见解。
translated by 谷歌翻译
实际应用程序中的车辆路由问题(VRP)通常会带有各种限制,因此为精确的解决方案方法或启发式搜索方法带来了其他计算挑战。从样本数据中学习启发式移动模式的最新想法已变得越来越有希望减少解决方案发展成本。但是,使用基于学习的方法来解决更多类型的受限VRP仍然是一个挑战。困难在于在寻找最佳解决方案时控制约束违规。为了克服这一挑战,我们提出了一种基于加强学习的方法,通过纳入Lagrangian放松技术并使用受限的策略优化来解决软件限制的VRP。我们将该方法应用于三种常见类型的VRP,旅行推销员问题与时间窗口(TSPTW),电容性VRP(CVRP)和带有时间窗口(CVRPTW)的电容VRP,以显示所提出方法的普遍性。在与现有的基于RL的方法和开源启发式求解器进行比较之后,我们展示了其在旅行距离,违规距离和推理速度方面良好平衡的解决方案方面的竞争性能。
translated by 谷歌翻译
草原修复是保护草原生态退化的关键手段。为了减轻广泛的人类劳动并提高了恢复效率,无人机的全自动能力很有希望,但仍在等待被利用。本文通过在计划草地修复时明确考虑了无人机和草地退化的现实限制来推动这项新兴技术。为此,在有限的无人机电池能量,草种子的重量,恢复区域的数量以及相应的尺寸下,在数学上以数学建模为数学建模。然后,我们分析了这些原始问题通过考虑这些限制,即最短的飞行路径和最佳区域分配出现了两个冲突目标。结果,恢复区域的最大化是轨迹设计问题和高度耦合区域分配问题的综合。从优化的角度来看,这需要解决旅行推销员问题(TSP)和多维背包问题(MKP)的两个NP硬问题。为了解决这个复杂的问题,我们提出了一种称为Chapbilm的合作优化算法,以通过利用它们之间的相互依赖性来交入解决这两个问题。多个模拟验证轨迹设计与区域分配之间的冲突。合作优化算法的有效性也得到了与传统优化方法的比较,这些方法不利用两个问题之间的相互依赖性。结果,提出的算法以近乎理想的方式成功地解决了多个仿真实例。
translated by 谷歌翻译
事物互联网(物联网)是一个由嵌入式传感器和服务网络为特征的范例。结合了这些传感器以收集各种信息,跟踪物理条件,例如废物箱状态,并使用不同的集中平台交换数据。对这种传感器的需求正在增加;然而,技术的扩散具有各种挑战。例如,如何使用IoT及其相关数据来增强废物管理?在智能城市,有效的废物管理系统至关重要。人工智能(AI)和启用IOT的方法可以赋予城市管理废物收集。这项工作提出了一种在给定空间约束的支持物联网的废物管理系统中提供推荐的智能方法。它基于基于AI的方法进行彻底的分析,并比较它们的相应结果。我们的解决方案基于多级决策过程,其中考虑到箱子状态和坐标以解决路由问题。这种基于AI的模型可以帮助工程师设计可持续的基础设施系统。
translated by 谷歌翻译
线覆盖范围的问题是找到有效的路由,以通过一个或多个资源约束的机器人覆盖线性特征。线性具有模型环境,例如道路网络,电力线以及石油和天然气管道。我们为机器人定义了两种旅行模式:维修和陷入困境。机器人服务功能如果它执行特定于任务的操作,例如拍摄图像,则它可以遍历该功能;否则,它是无人机的。穿越环境会产生成本(例如旅行时间)和对资源的需求(例如电池寿命)。维修和无人机的成本和需求功能可能具有不同的成本和需求功能,我们进一步允许它们取决于方向。我们将环境建模为图形,并提供整数线性程序。由于问题是NP-HARD,因此我们开发了一种快速有效的启发式算法,即合并 - 默认混合物(MEM)。该算法的建设性属性使得为大图求解了多depot版本。我们进一步扩展了MEM算法,以处理转弯成本和非语言限制。我们在50个道路网络的数据集上对算法进行基准测试,并在道路网络上使用空中机器人进行了实验中的算法。
translated by 谷歌翻译
本文介绍了相关的弧定向问题(CAOP),其中的任务是找到机器人团队的路线,以最大程度地收集与环境中功能相关的奖励的收集。这些功能可以是一维或环境中的点,并且可以具有空间相关性,即访问环境中的功能可能会提供与相关功能相关的奖励的一部分。机器人在环境环境时会产生成本,并且路线的总成本受到资源限制(例如电池寿命或操作时间)的限制。由于环境通常很大,我们允许多个仓库在机器人必须启动和结束路线的地方。 CAOP概括了相关的定向问题(COP),其中奖励仅与点特征相关联以及ARC定向启动问题(AOP),其中奖励与无空间相关。我们制定了一个混合整数二次程序(MIQP),该程序正式化了问题并提供最佳的解决方案。但是,这个问题是NP-HARD,因此我们开发了一种有效的贪婪的建设性算法。我们用两种不同的应用说明了问题:甲烷气体泄漏检测和道路网络覆盖范围的信息路径计划。
translated by 谷歌翻译