In the last years, there has been a great interest in machine-learning-based heuristics for solving NP-hard combinatorial optimization problems. The developed methods have shown potential on many optimization problems. In this paper, we present a learned heuristic for the reoptimization of a problem after a minor change in its data. We focus on the case of the capacited vehicle routing problem with static clients (i.e., same client locations) and changed demands. Given the edges of an original solution, the goal is to predict and fix the ones that have a high chance of remaining in an optimal solution after a change of client demands. This partial prediction of the solution reduces the complexity of the problem and speeds up its resolution, while yielding a good quality solution. The proposed approach resulted in solutions with an optimality gap ranging from 0\% to 1.7\% on different benchmark instances within a reasonable computing time.
translated by 谷歌翻译
列生成是一种用于解决各种优化问题的迭代方法。它将问题分解为两部分:主问题,以及一个或多个定价问题(PP)。该方法采取的总计计算时间在这两个部分之间划分。在路由或调度应用程序中,问题主要在网络上定义,并且PP通常是具有资源约束的NP-难以最短的路径问题。在这项工作中,我们提出了一种基于机器学习的新的启发式定价算法。通过利用先前执行期间收集的数据,目标是减小网络的大小并加速PP,仅保持具有高机会的弧形成为线性松弛解决方案的一部分。该方法已应用于两个特定问题:在公共交通中的车辆和船员调度问题以及时间窗口的车辆路由问题。可以获得高达40%的计算时间的减少。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
我们考虑了提高柱生成效率(CG)方法的方法,以解决车辆路由问题。我们介绍了CG配方中常用的NG-Route松弛度和降低状态空间松弛(DSSR)的替代/补充,我们引入了局部区域(LA)路线。 LA路线是NG路由的子集和基本路线的超级集合。通常,CG的定价阶段必须产生基本路线,这些路线是没有重复客户的路线,使用可能在计算上昂贵的流程。非元素路线至少访问至少一个客户,创建一个周期。 LA路线以允许有效定价的方式放松成为基本途径的约束。从NG-Route放松方面,最好理解LA路线。 NG路由是允许在空间中具有非定位循环的路线。这意味着周期中至少有一个中间客户(称为断路器)必须考虑到周期中的起始客户在空间上远离。使用一组特殊索引来描述LA路线,该特殊索引与从开始到路线尽头的路线上的客户相对应。 LA路线的松弛进一步限制了一组允许的周期,除了强制执行断路器必须位于特殊索引中,该循环均超出了NG路由,其中​​一组特殊索引被递归地定义为如下。该路线中的第一个特殊索引是索引1,这意味着它与路线中的第一个客户关联。 K'th特殊索引对应于K-1第三个特殊索引之后的第一个客户,该索引并非被认为是(在空间上被认为是远离K-1'TEXPATEX的客户)的邻居。我们证明,与标准DSSR相比,LA路线松弛可以显着提高定价的计算速度。
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
柱生成(CG)是解决大规模优化问题的有效方法。CG通过求解列(即变量)的子集并逐渐包括可以改善当前子问题的解决方案的新列。通过反复解决定价问题,根据需要产生新列,这通常是NP - 硬的并且是CG方法的瓶颈。为了解决这个问题,我们提出了一种基于机器学习的定价启发式(MLPH),可以有效地产生许多高质量的柱。在CG的每次迭代中,我们的MLPH利用ML模型来预测定价问题的最佳解决方案,然后用于引导采样方法以有效地产生多个高质量柱。使用图形着色问题,我们经验证明,与六种最先进的方法相比,MLPH显着增强,并且CG的改善可能导致分支和价格精确方法的显着更好的性能。
translated by 谷歌翻译
我们介绍了多模式的汽车和乘车共享问题(MMCRP),其中使用一台汽车来涵盖一组乘车请求,同时将发现的请求分配给其他运输方式(MOT)。汽车的路线由一次或多个旅行组成。每次旅行都必须具有特定但不明的驱动程序,以仓库开始,然后以(可能不同的)仓库结束。即使两个骑行没有相同的起源和/或目的地,也允许在用户之间共享骑行。用户始终可以根据各个首选项列表使用其他运输方式。该问题可以作为车辆调度问题提出。为了解决该问题,构建了一个辅助图,在该图中,每次旅行在仓库中的启动和结尾,并覆盖可能的乘车共享,以时空图中的形式建模为弧。我们提出了一种基于列生成的两层分解算法,其中主问题可确保最多只能涵盖每个请求,并且定价问题通过在时间 - 时间中解决一种最短路径问题来生成新的有希望的路线空间网络。报告了基于现实实例的计算实验。基准实例基于奥地利维也纳的人口,空间和经济数据。我们通过在合理时间内基于列生成的方法来解决大型实例,并进一步研究了各种精确和启发式定价方案。
translated by 谷歌翻译
符合使用机器学习的不断增长的趋势,帮助解决组合优化问题,一个有希望的想法是通过使用学习的策略来改善混合整数编程(MIP)分支和绑定树内的节点选择。以前使用模仿学习的工作指示通过学习自适应节点搜索顺序来获取节点选择策略的可行性。相比之下,我们的模仿学习策略仅专注于学习节点的孩子中的哪一个选择。我们介绍了一个脱机方法,用于在两个设置中学习这样的策略:一个通过致力于修剪节点的启发式;一个是从叶子精确和背溯以保证找到最佳整数解决方案的备用。前一个设置对应于困扰期间的儿童选择器,而后者则类似于潜水启发式。我们在热情和确切的设置中将策略应用于流行的开源求解器SCIP。五个MIP数据集的经验结果表明,我们的节点选择策略比文献中最先进的先例更快地导致解决方案。虽然我们在精确解决方案的时间内没有击败高度优化的SCIP状态基准节点选择器,但如果预测模型的准确性足够,我们的启发式政策比所有基线都具有始终如一的最佳最优性差距。此外,结果还表明,当应用时间限制时,我们的启发式方法发现比测试大多数问题中所有基线的更好的解决方案。我们通过表明学习的政策模仿了SCIP基线来解释结果,但没有后者早期的暴跌中止。我们的建议是,尽管对文献的清晰改进,但这种MIP儿童选择器在更广泛的方法中更好地使用MIP分支和束缚树决策。
translated by 谷歌翻译
在这项研究中,我们提出了一个深入的学习优化框架,以解决动态的混合企业计划。具体而言,我们开发了双向长期内存(LSTM)框架,可以及时向前和向后处理信息,以学习最佳解决方案,以解决顺序决策问题。我们展示了我们在预测单项电容批号问题(CLSP)的最佳决策方面的方法,其中二进制变量表示是否在一个时期内产生。由于问题的动态性质,可以将CLSP视为序列标记任务,在该任务中,复发性神经网络可以捕获问题的时间动力学。计算结果表明,我们的LSTM优化(LSTM-OPT)框架大大减少了基准CLSP问题的解决方案时间,而没有太大的可行性和最佳性。例如,对于240,000多个测试实例,在85 \%级别的预测平均将CPLEX溶液的时间减少了9倍,最佳差距小于0.05 \%\%和0.4 \%\%\%\%\%的不可行性。此外,使用较短的计划范围训练的模型可以成功预测具有更长计划范围的实例的最佳解决方案。对于最困难的数据集,LSTM在25 \%级别的LSTM预测将70 CPU小时的溶液时间降低至小于2 CPU分钟,最佳差距为0.8 \%,而没有任何不可行。 LSTM-OPT框架在解决方案质量和精确方法方面,诸如Logistic回归和随机森林之类的经典ML算法(例如($ \ ell $,s)和基于动态编程的不平等,解决方案时间的改进。我们的机器学习方法可能有益于解决类似于CLSP的顺序决策问题,CLSP需要重复,经常和快速地解决。
translated by 谷歌翻译
我们提出了一种基于机器学习的新型方法来解决涉及大量独立关注者的二重性程序,作为一种特殊情况,其中包括两阶段随机编程。我们提出了一个优化模型,该模型明确考虑了追随者的采样子集,并利用机器学习模型来估计未采样关注者的客观值。与现有方法不同,我们将机器学习模型培训嵌入到优化问题中,这使我们能够采用无法使用领导者决策来表示的一般追随者功能。我们证明了由原始目标函数衡量的生成领导者决策的最佳差距,该目标函数考虑了整个追随者集。然后,我们开发追随者采样算法来收紧界限和一种表示追随者功能的表示方法,可以用作嵌入式机器学习模型的输入。使用骑自行车网络设计问题的合成实例,我们比较方法的计算性能与基线方法。我们的方法为追随者的目标价值观提供了更准确的预测,更重要的是,产生了更高质量的领导者决策。最后,我们对骑自行车基础设施计划进行了现实世界中的案例研究,我们采用方法来解决超过一百万关注者的网络设计问题。与当前的自行车网络扩展实践相比,我们的方法提出了有利的性能。
translated by 谷歌翻译
路由问题是许多实际应用的一类组合问题。最近,已经提出了端到端的深度学习方法,以了解这些问题的近似解决方案启发式。相比之下,经典动态编程(DP)算法保证最佳解决方案,但与问题大小严重规模。我们提出了深入的政策动态规划(DPDP),旨在将学习神经启发式的优势与DP算法结合起来。 DPDP优先确定并限制DP状态空间,使用来自深度神经网络的策略进行培训,以预测示例解决方案的边缘。我们在旅行推销员问题(TSP)上评估我们的框架,车辆路由问题(VRP)和TSP与时间窗口(TSPTW),并表明神经政策提高了(限制性)DP算法的性能,使其对强有力的替代品具有竞争力如LKH,同时也优于求解TSP,VRP和TSPTWS的大多数其他“神经方法”,其中包含100个节点。
translated by 谷歌翻译
预订控制问题是收入管理领域中发生的顺序决策问题。更确切地说,货运预订控制重点是决定接受或拒绝预订的问题:鉴于有限的能力,接受预订请求或拒绝其保留能力,以预订可能更高收入的未来预订。该问题可以作为有限的摩尼斯随机动态程序提出,其中接受一组请求会在预订期结束时获得利润,取决于履行公认的预订的成本。对于许多货运申请,可以通过解决操作决策问题来获得满足请求的成本,该问题通常需要解决混合组织线性计划的解决方案。在部署强化学习算法时,通常会常规地解决此类操作问题,这可能太耗时了。大多数预订控制策略是通过解决特定问题的数学编程松弛来获得的,这些松弛通常是不宽松的,无法推广到新问题,并且在某些情况下提供了相当粗糙的近似值。在这项工作中,我们提出了一种两阶段的方法:我们首先训练一个监督的学习模型来预测操作问题的目标,然后我们将模型部署在加固学习算法中以计算控制政策。这种方法是一般的:每当可以预测Horizo​​n操作问题的目标函数时,都可以使用它,并且特别适合那些此类问题在计算上很难的情况。此外,它允许人们利用加强学习的最新进展,因为常规解决操作问题被单个预测所取代。我们的方法对文献中的两个预订控制问题进行了评估,即分销物流和航空公司货物管理。
translated by 谷歌翻译
近年来,在平衡(超级)图分配算法的设计和评估中取得了重大进展。我们调查了过去十年的实用算法的趋势,用于平衡(超级)图形分区以及未来的研究方向。我们的工作是对先前有关该主题的调查的更新。特别是,该调查还通过涵盖了超图形分区和流算法来扩展先前的调查,并额外关注并行算法。
translated by 谷歌翻译
最小的平方和群集(MSSC)或K-Means型聚类,传统上被认为是无监督的学习任务。近年来,使用背景知识来提高集群质量,促进聚类过程的可解释性已成为数学优化和机器学习研究的热门研究课题。利用数据群集中的背景信息的问题称为半监督或约束群集。在本文中,我们为半监控MSSC提供了一种新的分支和绑定算法,其中背景知识被包含为成对必须 - 链接和无法链接约束。对于较低的界限,我们解决了MSSC离散优化模型的Semidefinite编程宽松,并使用了用于加强界限的纤维平面程序。相反,通过使用整数编程工具,我们提出了将K-Means算法适应受约束的情况。这是第一次,所提出的全局优化算法有效地管理,以解决现实世界的情况,最高可达800个数据点,具有必要的必须 - 链接和无法链接约束以及通用数量的功能。这个问题大小大约比最先进的精确算法解决的实例大约四倍。
translated by 谷歌翻译
由于货运车数量的增加,在城市地区采用了电动汽车(EV),以减少环境污染和全球变暖。但是,路由最后一英里物流的轨迹仍在继续影响社会和经济可持续性时仍然存在缺陷。因此,在本文中,提出了一种称为超高神性自适应模拟退火的超增压性(HH)方法,并提出了增强学习(HHASA $ _ {RL} $)。它由多军匪徒方法和自适应模拟退火(SA)元启示术算法组成,用于解决该问题称为电容的电动汽车路由问题(CEVRP)。由于充电站数量有限和电动汽车的旅行范围,因此电动汽车必须提前为电池充电时刻,并减少旅行时间和成本。 HH实施的HH改善了多个最低最低知名解决方案,并为IEEE WCCI2020竞赛的拟议基准测试获得了一些高维实例的最佳平均值。
translated by 谷歌翻译
学习解决组合优化问题,例如车辆路径问题,提供古典运营研究求解器和启发式的巨大计算优势。最近开发的深度加强学习方法迭代或顺序地构建一组个别旅游的最初给定的解决方案。然而,大多数现有的基于学习的方法都无法为固定数量的车辆工作,从而将客户的复杂分配问题绕过APRIORI给定数量的可用车辆。另一方面,这使得它们不太适合真实应用程序,因为许多物流服务提供商依赖于提供的解决方案提供了特定的界限船队规模,并且无法适应车辆数量的短期更改。相比之下,我们提出了一个强大的监督深度学习框架,在尊重APRiori固定数量的可用车辆的同时构建完整的旅游计划。与高效的后处理方案结合,我们的监督方法不仅要快得多,更容易训练,而且还实现了包含车辆成本的实际方面的竞争结果。在彻底的控制实验中,我们将我们的方法与我们展示稳定性能的多种最先进的方法进行比较,同时利用较少的车辆并在相关工作的实验协议中存在一些亮点。
translated by 谷歌翻译
本文介绍了一种增强的元启发式(ML-ACO),将机器学习(ML)和蚁群优化(ACO)结合起来解决组合优化问题。为了说明我们ML-ACO算法的底层机制,我们首先描述测试问题,定向问题。在这个问题中,目的是找到一个路线,该路线在时间预算中在图中访问顶点的子集,以最大化收集的分数。在我们ML-ACO算法的第一阶段,使用一组小问题实例训练ML模型,其中已知最佳解决方案。具体地,分类模型用于将边缘分类为最佳路由的一部分,或不使用特定于问题的特征和统计测量。然后,训练模型用于预测测试问题实例图表中的边缘所属的概率属于相应的最优路由。在第二阶段,我们将预测的概率纳入我们算法的ACO组件,即,使用概率值作为启发式权重或者热启动信息素矩阵。这里,在构建可行的路线时偏向有利于这些预测的高质量边缘的概率值。我们已经测试了多种分类模型,包括图形神经网络,逻辑回归和支持向量机,实验结果表明,我们的解决方案预测方法一直促进ACO的性能。此外,我们经验证明我们在小型合成实例上培训的ML模型概括为大型合成和现实世界的情况。我们将ML与META-HEURISTIC集成的方法是通用的,可以应用于各种优化问题。
translated by 谷歌翻译
通过边界估计可以显着简化求解约束优化问题(COP),即提供成本函数的紧密边界。通过使用由已知边界的数据组成的数据以及COMPS提取的特征来馈送监督机器学习(ML)模型,可以训练模型以估计新COP实例的边界。在本文中,我们首先概述了来自问题实例的约束编程(CP)的ML的现有知识体系。其次,我们介绍了应用于支持CP解算器的工具的边界估计框架。在该框架内,讨论并评估了不同的ML模型,并评估其对边界估计的适用性,并避免避免求解器找到最佳解决方案的不可行估计的对策。第三,我们在七个警察中提出了一种实验研究,与不同的CP溶剂。我们的结果表明,可以仅限于这些警察的近似最佳边界。这些估计的边界将客观域大小减少60-88%,可以帮助求解器在搜索期间提前找到近乎最佳解决方案。
translated by 谷歌翻译
在本文中,我们研究了电子商务运营商面临的顺序决策问题,与何时从中央仓库发送车辆以服务于客户请求,并在哪个命令下提供服务,假设是在到达仓库的包裹是随机且动态的。目的是最大化在服务时间内可以交付的包裹数。我们提出了两种解决此问题的强化学习方法,一种基于策略函数近似(PFA),第二种基于值函数近似(VFA)。两种方法都与前景策略相结合,其中未来发布日期以蒙特卡洛的方式进行采样,并使用量身定制的批处理方法来近似未来状态的价值。我们的PFA和VFA很好地利用了基于分支机构的精确方法来提高决策质量。我们还建立了足够的条件,可以将最佳策略的部分表征并将其集成到PFA/VFA中。在基于720个基准实例的实证研究中,我们使用具有完美信息的上限进行了竞争分析,我们表明PFA和VFA的表现极大地超过了两种替代近视方法。总体而言,PFA提供最佳解决方案,而VFA(从两阶段随机优化模型中受益)在解决方案质量和计算时间之间取得了更好的权衡。
translated by 谷歌翻译
为混合整数线性编程问题(MILLS)找到高质量解决方案对于许多实际应用非常重要。在这方面,提出了精炼启发式局部分支(LB)来生产改进解决方案,并且对MILP中的本地搜索方法的开发产生了高度影响力。该算法迭代地探索由所谓的本地分支约束定义的一系列解决方案邻域,即,限制与参考解决方案的距离的线性不等式。对于LB算法,邻域大小的选择对于性能至关重要。虽然它是由原始LB方案中的保守值初始化的,但我们的新观察是最佳规模强烈依赖于特定的MILP实例。在这项工作中,我们调查搜索附近的大小与底层LB算法的行为之间的关系,我们设计了一种基于倾斜的框架,用于引导LB启发式的邻居搜索。该框架由两阶段战略组成。对于第一阶段,训练缩放的回归模型以通过回归任务在第一迭代中预测LB邻域的大小。在第二阶段,我们利用加强学习和设计加强的邻域搜索策略,以动态调整随后的迭代处的大小。我们计算地表明,确实可以学习邻域大小,导致改进的性能,并且整个算法在实例大小相对于实例大小概括,并且显着地跨越实例概括。
translated by 谷歌翻译