一贯的高数据质量对于深度学习领域的新型损失功能和体系结构的发展至关重要。通常假定存在此类数据和标签的存在,而在许多情况下,获取高质量数据集仍然是一个主要问题。在现实世界数据集中,由于注释者的主观注释,我们经常遇到模棱两可的标签。在我们以数据为中心的方法中,我们提出了一种重新标记标签的方法,而不是在神经网络中实施此问题的处理。根据定义,硬分类不足以捕获数据的现实歧义。因此,我们提出了方法“以数据为中心的分类和聚类(DC3)”,该方法结合了半监督分类和聚类。它会自动估计图像的歧义,并根据歧义进行分类或聚类。 DC3本质上是普遍的,因此除了许多半监督学习(SSL)算法外,还可以使用它。平均而言,这会导致分类的F1得分高7.6%,而在多个评估的SSL算法和数据集中,簇的内距离降低了7.9%。最重要的是,我们给出了概念验证,即DC3的分类和聚类是对此类模棱两可标签的手动完善的建议。总体而言,SSL与我们的方法DC3的组合可以在注释过程中更好地处理模棱两可的标签。
translated by 谷歌翻译
高质量数据对于现代机器学习是必需的。但是,由于人类的嘈杂和模棱两可的注释,难以获取此类数据。确定图像标签的这种注释的聚合导致数据质量较低。我们提出了一个以数据为中心的图像分类基准,该基准具有9个现实世界数据集和每个图像的多次注释,以调查和量化此类数据质量问题的影响。我们通过询问如何提高数据质量来关注以数据为中心的观点。在数千个实验中,我们表明多个注释可以更好地近似实际的基础类别分布。我们确定硬标签无法捕获数据的歧义,这可能会导致过度自信模型的常见问题。根据呈现的数据集,基准基准和分析,我们为未来创造了多个研究机会。
translated by 谷歌翻译
高质量数据是现代机器学习的关键方面。但是,人类产生的标签遭受了标签噪声和阶级歧义等问题。我们提出了一个问题,即硬标签是否足以在存在这些固有的不精确的情况下代表基本的地面真相分布。因此,我们将学习的差异与硬和软标签进行定量和定性,以获取合成和现实世界数据集。我们表明,软标签的应用可改善性能,并产生内部特征空间的更常规结构。
translated by 谷歌翻译
半监督学习(SSL)是解决监督学习的注释瓶颈的主要方法之一。最近的SSL方法可以有效利用大量未标记数据的存储库来提高性能,同时依靠一小部分标记数据。在大多数SSL方法中,一个常见的假设是,标记和未标记的数据来自同一基础数据分布。但是,在许多实际情况下,情况并非如此,这限制了其适用性。相反,在这项工作中,我们试图解决最近提出的挑战性的开放世界SSL问题,这些问题并非如此。在开放世界的SSL问题中,目的是识别已知类别的样本,并同时检测和群集样品属于未标记数据中的新型类别。这项工作引入了OpenLDN,该OpenLDN利用成对的相似性损失来发现新颖的类别。使用双层优化规则,此成对相似性损失利用了标记的设置中可用的信息,以隐式群集新颖的类样本,同时识别来自已知类别的样本。在发现新颖的类别后,OpenLDN将Open-World SSL问题转换为标准SSL问题,以使用现有的SSL方法实现额外的性能提高。我们的广泛实验表明,OpenLDN在多个流行的分类基准上胜过当前的最新方法,同时提供了更好的准确性/培训时间权衡。
translated by 谷歌翻译
深度学习正在推动许多计算机视觉应用中的最新技术。但是,它依赖于大量注释的数据存储库,并且捕获现实世界数据的不受约束性质尚未解决。半监督学习(SSL)用大量未标记的数据来补充带注释的培训数据,以降低注释成本。标准SSL方法假设未标记的数据来自与注释数据相同的分布。最近,Orca [9]引入了一个更现实的SSL问题,称为开放世界SSL,假设未注释的数据可能包含来自未知类别的样本。这项工作提出了一种在开放世界中解决SSL的新方法,我们同时学习对已知和未知类别进行分类。在我们方法的核心方面,我们利用样本不确定性,并将有关类分布的先验知识纳入,以生成可靠的伪标记,以适用于已知和未知类别的未标记数据。我们广泛的实验在几个基准数据集上展示了我们的方法的有效性,在该数据集上,它在其中的七个不同数据集(包括CIFAR-100(17.6%)(17.6%),Imagenet-100(5.7%)(5.7%)和微小成像网(9.9%)。
translated by 谷歌翻译
我们研究了用于半监控学习(SSL)的无监督数据选择,其中可以提供大规模的未标记数据集,并且为标签采集预算小额数据子集。现有的SSL方法专注于学习一个有效地集成了来自给定小标记数据和大型未标记数据的信息的模型,而我们专注于选择正确的数据以用于SSL的注释,而无需任何标签或任务信息。直观地,要标记的实例应统称为下游任务的最大多样性和覆盖范围,并且单独具有用于SSL的最大信息传播实用程序。我们以三步数据为中心的SSL方法形式化这些概念,使稳定性和精度的纤维液改善8%的CiFar-10(标记为0.08%)和14%的Imagenet -1k(标记为0.2%)。它也是一种具有各种SSL方法的通用框架,提供一致的性能增益。我们的工作表明,在仔细选择注释数据上花费的小计算带来了大注释效率和模型性能增益,而无需改变学习管道。我们完全无监督的数据选择可以轻松扩展到其他弱监督的学习设置。
translated by 谷歌翻译
Semi-supervised learning (SSL) provides a powerful framework for leveraging unlabeled data when labels are limited or expensive to obtain. SSL algorithms based on deep neural networks have recently proven successful on standard benchmark tasks. However, we argue that these benchmarks fail to address many issues that SSL algorithms would face in real-world applications. After creating a unified reimplementation of various widely-used SSL techniques, we test them in a suite of experiments designed to address these issues. We find that the performance of simple baselines which do not use unlabeled data is often underreported, SSL methods differ in sensitivity to the amount of labeled and unlabeled data, and performance can degrade substantially when the unlabeled dataset contains out-ofdistribution examples. To help guide SSL research towards real-world applicability, we make our unified reimplemention and evaluation platform publicly available. 2 * Equal contribution 2 https://github.com/brain-research/realistic-ssl-evaluation 32nd Conference on Neural Information Processing Systems (NeurIPS 2018),
translated by 谷歌翻译
半监督学习方法已成为对打击获得大量注释数据的挑战的活跃研究领域。为了提高半监督学习方法表现的目标,我们提出了一种新颖的框架,Hiematch,一种半监督方法,利用分层信息来降低标签成本并表现以及vanilla半监督学习方法。分层信息通常是具有细粒标签的粗标签(例如,啄木鸟)的粗标签(例如,啄木鸟)的现有知识(例如,柔软的啄木鸟或金朝啄木鸟)。但是,尚未探讨使用使用粗类标签来改进半监督技术的监督。在没有细粒度的标签的情况下,Himatch利用标签层次结构,并使用粗级标签作为弱监控信号。此外,Himatch是一种改进任何半熟的学习框架的通用方法,我们使用我们的结果在最近的最先进的技术Mixmatch和Fixmatch上展示了这一点。我们评估了在两个基准数据集,即CiFar-100和Nabirds上的Himatch疗效。与MixMatch相比,HOMACHACT可以在CIFAR-100上减少50%的粒度标签50%的用量,仅在前1个精度的边缘下降0.59%。代码:https://github.com/07agarg/hiermatch.
translated by 谷歌翻译
伪标记已被证明是一种有希望的半监督学习(SSL)范式。现有的伪标记方法通常假定培训数据的类别分布是平衡的。但是,这种假设远非现实的场景,现有的伪标记方法在班级不平衡的背景下遭受了严重的性能变性。在这项工作中,我们在半监督设置下研究伪标记。核心思想是使用偏置自适应分类器自动吸收由班级失衡引起的训练偏差,该分类器将原始线性分类器与偏置吸引子配合使用。偏置吸引子设计为适应训练偏见的轻巧残留网络。具体而言,通过双级学习框架来学习偏见吸引子,以便偏见自适应分类器能够符合不平衡的训练数据,而线性分类器可以为每个类提供无偏的标签预测。我们在各种不平衡的半监督设置下进行了广泛的实验,结果表明我们的方法可以适用于不同的伪标记模型,并且优于先前的艺术。
translated by 谷歌翻译
Semi-supervised learning (SSL) provides an effective means of leveraging unlabeled data to improve a model's performance. This domain has seen fast progress recently, at the cost of requiring more complex methods. In this paper we propose FixMatch, an algorithm that is a significant simplification of existing SSL methods. FixMatch first generates pseudo-labels using the model's predictions on weaklyaugmented unlabeled images. For a given image, the pseudo-label is only retained if the model produces a high-confidence prediction. The model is then trained to predict the pseudo-label when fed a strongly-augmented version of the same image. Despite its simplicity, we show that FixMatch achieves state-of-the-art performance across a variety of standard semi-supervised learning benchmarks, including 94.93% accuracy on CIFAR-10 with 250 labels and 88.61% accuracy with 40 -just 4 labels per class. We carry out an extensive ablation study to tease apart the experimental factors that are most important to FixMatch's success. The code is available at https://github.com/google-research/fixmatch.
translated by 谷歌翻译
我们提出了一个新颖的半监督学习框架,该框架巧妙地利用了模型的预测,从两个强烈的图像观点中的预测之间的一致性正则化,并由伪标签的信心加权,称为conmatch。虽然最新的半监督学习方法使用图像的弱和强烈的观点来定义方向的一致性损失,但如何为两个强大的观点之间的一致性定义定义这种方向仍然没有探索。为了解决这个问题,我们通过弱小的观点作为非参数和参数方法中的锚点来提出从强大的观点中对伪标签的新颖置信度度量。特别是,在参数方法中,我们首次介绍了伪标签在网络中的信心,该网络的信心是以端到端方式通过骨干模型学习的。此外,我们还提出了阶段训练,以提高培训的融合。当纳入现有的半监督学习者中时,并始终提高表现。我们进行实验,以证明我们对最新方法的有效性并提供广泛的消融研究。代码已在https://github.com/jiwoncocoder/conmatch上公开提供。
translated by 谷歌翻译
尽管半监督学习(SSL)的最新研究已经在单标签分类问题上取得了强劲的表现,但同样重要但毫无疑问的问题是如何利用多标签分类任务中未标记数据的优势。为了将SSL的成功扩展到多标签分类,我们首先使用说明性示例进行分析,以获得有关多标签分类中存在的额外挑战的一些直觉。基于分析,我们提出了一个基于百分比的阈值调整方案的百分位摩擦,以动态地改变训练期间每个类别的正和负伪标签的得分阈值,以及动态的未标记失误权重,从而进一步降低了从早期未标记的预测。与最近的SSL方法相比,在不丧失简单性的情况下,我们在Pascal VOC2007和MS-Coco数据集上实现了强劲的性能。
translated by 谷歌翻译
最小化未标记数据的预测不确定性是在半监督学习(SSL)中实现良好性能的关键因素。预测不确定性通常表示为由输出空间中的转换概率计算的\ emph {熵}。大多数现有工程通过接受确定类(具有最大概率)作为真实标签或抑制微妙预测(具有较小概率)来蒸馏低熵预测。无论如何,这些蒸馏策略通常是模型培训的启发式和更少的信息。从这种辨别中,本文提出了一个名为自适应锐化(\ ADS)的双机制,首先将软阈值应用于自适应掩盖确定和可忽略不计的预测,然后无缝地锐化通知的预测,与通知的预测蒸馏出某些预测只要。更重要的是,我们通过与各种蒸馏策略进行比较理论上,从理论上分析\广告的特征。许多实验验证\广告通过使其显着提高了最先进的SSL方法。我们提出的\ ADS为未来蒸馏的SSL研究造成一个基石。
translated by 谷歌翻译
Annotating the dataset with high-quality labels is crucial for performance of deep network, but in real world scenarios, the labels are often contaminated by noise. To address this, some methods were proposed to automatically split clean and noisy labels, and learn a semi-supervised learner in a Learning with Noisy Labels (LNL) framework. However, they leverage a handcrafted module for clean-noisy label splitting, which induces a confirmation bias in the semi-supervised learning phase and limits the performance. In this paper, we for the first time present a learnable module for clean-noisy label splitting, dubbed SplitNet, and a novel LNL framework which complementarily trains the SplitNet and main network for the LNL task. We propose to use a dynamic threshold based on a split confidence by SplitNet to better optimize semi-supervised learner. To enhance SplitNet training, we also present a risk hedging method. Our proposed method performs at a state-of-the-art level especially in high noise ratio settings on various LNL benchmarks.
translated by 谷歌翻译
Semi-supervised learning (SSL) has achieved great success in leveraging a large amount of unlabeled data to learn a promising classifier. A popular approach is pseudo-labeling that generates pseudo labels only for those unlabeled data with high-confidence predictions. As for the low-confidence ones, existing methods often simply discard them because these unreliable pseudo labels may mislead the model. Nevertheless, we highlight that these data with low-confidence pseudo labels can be still beneficial to the training process. Specifically, although the class with the highest probability in the prediction is unreliable, we can assume that this sample is very unlikely to belong to the classes with the lowest probabilities. In this way, these data can be also very informative if we can effectively exploit these complementary labels, i.e., the classes that a sample does not belong to. Inspired by this, we propose a novel Contrastive Complementary Labeling (CCL) method that constructs a large number of reliable negative pairs based on the complementary labels and adopts contrastive learning to make use of all the unlabeled data. Extensive experiments demonstrate that CCL significantly improves the performance on top of existing methods. More critically, our CCL is particularly effective under the label-scarce settings. For example, we yield an improvement of 2.43% over FixMatch on CIFAR-10 only with 40 labeled data.
translated by 谷歌翻译
基于伪标签的半监督学习(SSL)在原始数据利用率上取得了巨大的成功。但是,由于自我生成的人工标签中包含的噪声,其训练程序受到确认偏差的影响。此外,该模型的判断在具有广泛分布数据的现实应用程序中变得更加嘈杂。为了解决这个问题,我们提出了一种名为“班级意识的对比度半监督学习”(CCSSL)的通用方法,该方法是提高伪标签质量并增强现实环境中模型的稳健性的插手。我们的方法不是将现实世界数据视为一个联合集合,而是分别处理可靠的分布数据,并将其融合到下游任务中,并将其与图像对比度融合到下游任务中,以更好地泛化。此外,通过应用目标重新加权,我们成功地强调了清洁标签学习,并同时减少嘈杂的标签学习。尽管它很简单,但我们提出的CCSSL比标准数据集CIFAR100和STL10上的最新SSL方法具有显着的性能改进。在现实世界数据集Semi-Inat 2021上,我们将FixMatch提高了9.80%,并提高了3.18%。代码可用https://github.com/tencentyouturesearch/classification-spoomls。
translated by 谷歌翻译
This work tackles the problem of semi-supervised learning of image classifiers. Our main insight is that the field of semi-supervised learning can benefit from the quickly advancing field of self-supervised visual representation learning. Unifying these two approaches, we propose the framework of self-supervised semi-supervised learning (S 4 L) and use it to derive two novel semi-supervised image classification methods. We demonstrate the effectiveness of these methods in comparison to both carefully tuned baselines, and existing semi-supervised learning methods. We then show that S 4 L and existing semi-supervised methods can be jointly trained, yielding a new state-of-the-art result on semi-supervised ILSVRC-2012 with 10% of labels.
translated by 谷歌翻译
Partial label learning (PLL) is an important problem that allows each training example to be labeled with a coarse candidate set, which well suits many real-world data annotation scenarios with label ambiguity. Despite the promise, the performance of PLL often lags behind the supervised counterpart. In this work, we bridge the gap by addressing two key research challenges in PLL -- representation learning and label disambiguation -- in one coherent framework. Specifically, our proposed framework PiCO consists of a contrastive learning module along with a novel class prototype-based label disambiguation algorithm. PiCO produces closely aligned representations for examples from the same classes and facilitates label disambiguation. Theoretically, we show that these two components are mutually beneficial, and can be rigorously justified from an expectation-maximization (EM) algorithm perspective. Moreover, we study a challenging yet practical noisy partial label learning setup, where the ground-truth may not be included in the candidate set. To remedy this problem, we present an extension PiCO+ that performs distance-based clean sample selection and learns robust classifiers by a semi-supervised contrastive learning algorithm. Extensive experiments demonstrate that our proposed methods significantly outperform the current state-of-the-art approaches in standard and noisy PLL tasks and even achieve comparable results to fully supervised learning.
translated by 谷歌翻译
一个常见的分类任务情况是,有大量数据可用于培训,但只有一小部分用类标签注释。在这种情况下,半监督培训的目的是通过利用标记数据,而且从大量未标记的数据中提高分类准确性。最近的作品通过探索不同标记和未标记数据的不同增强性数据之间的一致性约束,从而取得了重大改进。遵循这条路径,我们提出了一个新颖的无监督目标,该目标侧重于彼此相似的高置信度未标记的数据之间所研究的关系较少。新提出的对损失最大程度地减少了高置信度伪伪标签之间的统计距离,其相似性高于一定阈值。我们提出的简单算法将对损失与MixMatch家族开发的技术结合在一起,显示出比以前在CIFAR-100和MINI-IMAGENET上的算法的显着性能增长,并且与CIFAR-的最先进方法相当。 10和SVHN。此外,简单还优于传输学习设置中最新方法,其中模型是由在ImainEnet或域内实现的权重初始化的。该代码可在github.com/zijian-hu/simple上获得。
translated by 谷歌翻译
鉴于获得大量标记数据的潜在困难,许多作品探索了使用深度半监督学习,它使用标记和未标记的数据来培训神经网络架构。绝大多数SSL方法侧重于实现低密度分离假设或一致性假设,决策边界应该位于低密度区域的想法。但是,它们通过对每个数据点的决策边界进行本地更改来实现这一假设,忽略了数据的全局结构。在这项工作中,我们使用群集数据中存在的全局信息来探索替代方法来更新我们的决策边界。我们提出了一种新颖的框架,Cyclecluster,用于深度半监督分类。我们的核心优化由基于新的聚类正则化以及基于图形的伪标签和共享的深网络的基于群集的正规化驱动。展示集群假设的直接实现是基于流行的一致性正规化的可行替代方案。我们通过仔细的数值结果展示了我们技术的预测能力。
translated by 谷歌翻译