我们提出了一个新颖的半监督学习框架,该框架巧妙地利用了模型的预测,从两个强烈的图像观点中的预测之间的一致性正则化,并由伪标签的信心加权,称为conmatch。虽然最新的半监督学习方法使用图像的弱和强烈的观点来定义方向的一致性损失,但如何为两个强大的观点之间的一致性定义定义这种方向仍然没有探索。为了解决这个问题,我们通过弱小的观点作为非参数和参数方法中的锚点来提出从强大的观点中对伪标签的新颖置信度度量。特别是,在参数方法中,我们首次介绍了伪标签在网络中的信心,该网络的信心是以端到端方式通过骨干模型学习的。此外,我们还提出了阶段训练,以提高培训的融合。当纳入现有的半监督学习者中时,并始终提高表现。我们进行实验,以证明我们对最新方法的有效性并提供广泛的消融研究。代码已在https://github.com/jiwoncocoder/conmatch上公开提供。
translated by 谷歌翻译
一个常见的分类任务情况是,有大量数据可用于培训,但只有一小部分用类标签注释。在这种情况下,半监督培训的目的是通过利用标记数据,而且从大量未标记的数据中提高分类准确性。最近的作品通过探索不同标记和未标记数据的不同增强性数据之间的一致性约束,从而取得了重大改进。遵循这条路径,我们提出了一个新颖的无监督目标,该目标侧重于彼此相似的高置信度未标记的数据之间所研究的关系较少。新提出的对损失最大程度地减少了高置信度伪伪标签之间的统计距离,其相似性高于一定阈值。我们提出的简单算法将对损失与MixMatch家族开发的技术结合在一起,显示出比以前在CIFAR-100和MINI-IMAGENET上的算法的显着性能增长,并且与CIFAR-的最先进方法相当。 10和SVHN。此外,简单还优于传输学习设置中最新方法,其中模型是由在ImainEnet或域内实现的权重初始化的。该代码可在github.com/zijian-hu/simple上获得。
translated by 谷歌翻译
一致性正则化是半监督学习(SSL)最广泛使用的技术之一。通常,目的是培训一种模型,该模型是各种数据增强的模型。在本文中,我们重新审视了这个想法,并发现通过减少来自不同增强图像之间的特征之间的距离来实现不变性,导致性能提高。然而,通过增加特征距离来鼓励其令人鼓舞,而是提高性能。为此,我们通过一个简单但有效的技术,专长的技术提出了一种改进的一致性正则化框架,它分别施加了对分类器和特征级别的一致性和增义。实验结果表明,我们的模型定义了各种数据集和设置的新技术,并以最高的余量优于以前的工作,特别是在低数据制度中。进行了广泛的实验以分析该方法,并将发布代码。
translated by 谷歌翻译
Semi-supervised learning (SSL) provides an effective means of leveraging unlabeled data to improve a model's performance. This domain has seen fast progress recently, at the cost of requiring more complex methods. In this paper we propose FixMatch, an algorithm that is a significant simplification of existing SSL methods. FixMatch first generates pseudo-labels using the model's predictions on weaklyaugmented unlabeled images. For a given image, the pseudo-label is only retained if the model produces a high-confidence prediction. The model is then trained to predict the pseudo-label when fed a strongly-augmented version of the same image. Despite its simplicity, we show that FixMatch achieves state-of-the-art performance across a variety of standard semi-supervised learning benchmarks, including 94.93% accuracy on CIFAR-10 with 250 labels and 88.61% accuracy with 40 -just 4 labels per class. We carry out an extensive ablation study to tease apart the experimental factors that are most important to FixMatch's success. The code is available at https://github.com/google-research/fixmatch.
translated by 谷歌翻译
Semi-supervised learning (SSL) has achieved great success in leveraging a large amount of unlabeled data to learn a promising classifier. A popular approach is pseudo-labeling that generates pseudo labels only for those unlabeled data with high-confidence predictions. As for the low-confidence ones, existing methods often simply discard them because these unreliable pseudo labels may mislead the model. Nevertheless, we highlight that these data with low-confidence pseudo labels can be still beneficial to the training process. Specifically, although the class with the highest probability in the prediction is unreliable, we can assume that this sample is very unlikely to belong to the classes with the lowest probabilities. In this way, these data can be also very informative if we can effectively exploit these complementary labels, i.e., the classes that a sample does not belong to. Inspired by this, we propose a novel Contrastive Complementary Labeling (CCL) method that constructs a large number of reliable negative pairs based on the complementary labels and adopts contrastive learning to make use of all the unlabeled data. Extensive experiments demonstrate that CCL significantly improves the performance on top of existing methods. More critically, our CCL is particularly effective under the label-scarce settings. For example, we yield an improvement of 2.43% over FixMatch on CIFAR-10 only with 40 labeled data.
translated by 谷歌翻译
Annotating the dataset with high-quality labels is crucial for performance of deep network, but in real world scenarios, the labels are often contaminated by noise. To address this, some methods were proposed to automatically split clean and noisy labels, and learn a semi-supervised learner in a Learning with Noisy Labels (LNL) framework. However, they leverage a handcrafted module for clean-noisy label splitting, which induces a confirmation bias in the semi-supervised learning phase and limits the performance. In this paper, we for the first time present a learnable module for clean-noisy label splitting, dubbed SplitNet, and a novel LNL framework which complementarily trains the SplitNet and main network for the LNL task. We propose to use a dynamic threshold based on a split confidence by SplitNet to better optimize semi-supervised learner. To enhance SplitNet training, we also present a risk hedging method. Our proposed method performs at a state-of-the-art level especially in high noise ratio settings on various LNL benchmarks.
translated by 谷歌翻译
The core issue in semi-supervised learning (SSL) lies in how to effectively leverage unlabeled data, whereas most existing methods tend to put a great emphasis on the utilization of high-confidence samples yet seldom fully explore the usage of low-confidence samples. In this paper, we aim to utilize low-confidence samples in a novel way with our proposed mutex-based consistency regularization, namely MutexMatch. Specifically, the high-confidence samples are required to exactly predict "what it is" by conventional True-Positive Classifier, while the low-confidence samples are employed to achieve a simpler goal -- to predict with ease "what it is not" by True-Negative Classifier. In this sense, we not only mitigate the pseudo-labeling errors but also make full use of the low-confidence unlabeled data by consistency of dissimilarity degree. MutexMatch achieves superior performance on multiple benchmark datasets, i.e., CIFAR-10, CIFAR-100, SVHN, STL-10, mini-ImageNet and Tiny-ImageNet. More importantly, our method further shows superiority when the amount of labeled data is scarce, e.g., 92.23% accuracy with only 20 labeled data on CIFAR-10. Our code and model weights have been released at https://github.com/NJUyued/MutexMatch4SSL.
translated by 谷歌翻译
半监督学习(SSL)是规避建立高性能模型的昂贵标签成本的最有前途的范例之一。大多数现有的SSL方法常规假定标记和未标记的数据是从相同(类)分布中绘制的。但是,在实践中,未标记的数据可能包括课外样本;那些不能从标签数据中的封闭类中的单热编码标签,即未标记的数据是开放设置。在本文中,我们介绍了Opencos,这是一种基于最新的自我监督视觉表示学习框架来处理这种现实的半监督学习方案。具体而言,我们首先观察到,可以通过自我监督的对比度学习有效地识别开放式未标记数据集中的类外样本。然后,Opencos利用此信息来克服现有的最新半监督方法中的故障模式,通过利用一式旋转伪标签和软标签来为已识别的识别和外部未标记的标签数据分别。我们广泛的实验结果表明了Opencos的有效性,可以修复最新的半监督方法,适合涉及开放式无标记数据的各种情况。
translated by 谷歌翻译
标签预测上的一致性正则化成为半监督学习中的一项基本技术,但是它仍然需要大量的训练迭代以进行高性能。在这项研究中,我们分析了一致性正则化限制了由于在模型更新中排除具有不受欢迎的伪标记的样品,因此标记信息的传播限制了。然后,我们提出对比度正则化,以提高未标记数据的群集特征一致性正则化的效率和准确性。在特定的情况下,在通过其伪标签将强大的增强样品分配给群集后,我们的对比度正规化更新了模型,以便具有自信的伪标签的功能在同一集群中汇总了功能,同时将功能推迟了不同的群集中的功能。结果,在培训中,可以有效地将自信的伪标签的信息有效地传播到更无标记的样品中。在半监督学习任务的基准上,我们的对比正则化改善了以前的基于一致性的方法,并取得了最新的结果,尤其是在培训次数较少的情况下。我们的方法还显示了在开放式半监督学习中的稳健性能,其中未标记的数据包括分发样本。
translated by 谷歌翻译
自我培训是半监督学习的有效方法。关键的想法是让学习者本身根据其当前假设而迭代地为未标记的实例生成“伪监督”。结合一致性正则化,伪标签在各个域中显示了有希望的性能,例如在计算机视觉中。为了考虑伪标签的假设性质,这些通常以概率分布的形式提供。仍然可能争辩说,即使是概率分布也代表过多的知情程度,因为它表明学习者精确地了解地面真理的条件概率。在我们的方法中,我们因此允许学习者以债务集的形式标记实例,即(候选人)概率分布。由于这种表现力增加,学习者能够以更加灵活和更忠诚的方式代表不确定性和缺乏知识。要从那种弱标记的数据中学习,我们利用最近在所谓的超集学习领域提出的方法。在详尽的经验评估中,我们将我们的方法与最先进的自我监督方法进行比较,表明竞争优越的性能,尤其是含有高度不确定性的低标签情景。
translated by 谷歌翻译
半监督学习(SSL)是一个有效的框架,可以使用标记和未标记的数据训练模型,但是当缺乏足够的标记样品时,可能会产生模棱两可和不可区分的表示。有了人类的循环学习,积极的学习可以迭代地选择无标记的样品进行标签和培训,以提高SSL框架的性能。但是,大多数现有的活跃学习方法都取决于预先训练的功能,这不适合端到端学习。为了解决SSL的缺点,在本文中,我们提出了一种新颖的端到端表示方法,即ActiveMatch,它将SSL与对比度学习和积极学习结合在一起,以充分利用有限的标签。从少量的标记数据开始,无监督的对比度学习作为热身学习,然后将ActiveMatch结合在一起,将SSL和监督对比度学习结合在一起,并积极选择在培训期间标记的最具代表性的样本,从而更好地表示分类。与MixMatch和FixMatch具有相同数量的标记数据相比,我们表明ActiveMatch实现了最先进的性能,CIFAR-10的精度为89.24%,具有100个收集的标签,而92.20%的精度为92.20%,有200个收集的标签。
translated by 谷歌翻译
Despite significant advances, the performance of state-of-the-art continual learning approaches hinges on the unrealistic scenario of fully labeled data. In this paper, we tackle this challenge and propose an approach for continual semi-supervised learning -- a setting where not all the data samples are labeled. An underlying issue in this scenario is the model forgetting representations of unlabeled data and overfitting the labeled ones. We leverage the power of nearest-neighbor classifiers to non-linearly partition the feature space and learn a strong representation for the current task, as well as distill relevant information from previous tasks. We perform a thorough experimental evaluation and show that our method outperforms all the existing approaches by large margins, setting a strong state of the art on the continual semi-supervised learning paradigm. For example, on CIFAR100 we surpass several others even when using at least 30 times less supervision (0.8% vs. 25% of annotations).
translated by 谷歌翻译
长期以来,半监督学习(SSL)已被证明是一种有限的标签模型的有效技术。在现有的文献中,基于一致性的基于正则化的方法,这些方法迫使扰动样本具有类似的预测,而原始的样本则引起了极大的关注。但是,我们观察到,当标签变得极为有限时,例如,每个类别的2或3标签时,此类方法的性能会大大降低。我们的实证研究发现,主要问题在于语义信息在数据增强过程中的漂移。当提供足够的监督时,可以缓解问题。但是,如果几乎没有指导,错误的正则化将误导网络并破坏算法的性能。为了解决该问题,我们(1)提出了一种基于插值的方法来构建更可靠的正样品对; (2)设计一种新颖的对比损失,以指导学习网络的嵌入以在样品之间进行线性更改,从而通过扩大保证金决策边界来提高网络的歧视能力。由于未引入破坏性正则化,因此我们提出的算法的性能在很大程度上得到了改善。具体而言,所提出的算法的表现优于第二好算法(COMATT),而当CIFAR-10数据集中的每个类只有两个标签可用时,可以实现88.73%的分类精度,占5.3%。此外,我们通过通过我们提出的策略大大改善现有最新算法的性能,进一步证明了所提出的方法的普遍性。
translated by 谷歌翻译
半监督学习方法已成为对打击获得大量注释数据的挑战的活跃研究领域。为了提高半监督学习方法表现的目标,我们提出了一种新颖的框架,Hiematch,一种半监督方法,利用分层信息来降低标签成本并表现以及vanilla半监督学习方法。分层信息通常是具有细粒标签的粗标签(例如,啄木鸟)的粗标签(例如,啄木鸟)的现有知识(例如,柔软的啄木鸟或金朝啄木鸟)。但是,尚未探讨使用使用粗类标签来改进半监督技术的监督。在没有细粒度的标签的情况下,Himatch利用标签层次结构,并使用粗级标签作为弱监控信号。此外,Himatch是一种改进任何半熟的学习框架的通用方法,我们使用我们的结果在最近的最先进的技术Mixmatch和Fixmatch上展示了这一点。我们评估了在两个基准数据集,即CiFar-100和Nabirds上的Himatch疗效。与MixMatch相比,HOMACHACT可以在CIFAR-100上减少50%的粒度标签50%的用量,仅在前1个精度的边缘下降0.59%。代码:https://github.com/07agarg/hiermatch.
translated by 谷歌翻译
半监督学习(SSL)的最新最新方法将一致性正则化与基于置信的伪标记结合在一起。为了获得高质量的伪标签,通常采用高置信度阈值。但是,已经表明,对于远离训练数据的样本,深网的基于软磁性的置信度得分可能很高,因此,即使是高信心不明的样品,伪标签也可能仍然不可靠。在这项工作中,我们提出了伪标记的新观点:而不是依靠模型信心,而是衡量未标记的样本是否可能是“分布”;即,接近当前的培训数据。为了对未标记的样本进行分类是“分布”还是“分发”,我们采用了分布外检测文献中的能量评分。随着培训的进行进展,更不标记的样品成为分配并有助于培训,标记和伪标记的数据可以更好地近似于真正的分布以改善模型。实验表明,我们的基于能量的伪标记方法,尽管从概念上讲简单,但在不平衡的SSL基准测试方面显着优于基于置信的方法,并在类平衡的数据上实现了竞争性能。例如,当不平衡比率高于50时,它会在CIFAR10-LT上产生4-6%的绝对准确性提高。当与最新的长尾SSL方法结合使用时,可以实现进一步的改进。
translated by 谷歌翻译
深度神经网络在大规模标记的数据集的帮助下,在各种任务上取得了出色的表现。然而,这些数据集既耗时又竭尽全力来获得现实的任务。为了减轻对标记数据的需求,通过迭代分配伪标签将伪标签分配给未标记的样本,自我训练被广泛用于半监督学习中。尽管它很受欢迎,但自我训练还是不可靠的,通常会导致训练不稳定。我们的实验研究进一步表明,半监督学习的偏见既来自问题本身,也来自不适当的训练,并具有可能不正确的伪标签,这会在迭代自我训练过程中累积错误。为了减少上述偏见,我们提出了自我训练(DST)。首先,伪标签的生成和利用是由两个独立于参数的分类器头解耦,以避免直接误差积累。其次,我们估计自我训练偏差的最坏情况,其中伪标记函数在标记的样品上是准确的,但在未标记的样本上却尽可能多地犯错。然后,我们通过避免最坏的情况来优化表示形式,以提高伪标签的质量。广泛的实验证明,DST在标准的半监督学习基准数据集上的最先进方法中,平均提高了6.3%,而在13个不同任务上,FIXMATCH的平均水平为18.9%。此外,DST可以无缝地适应其他自我训练方法,并有助于稳定他们在从头开始的培训和预先训练模型的训练的情况下,在培训的情况下进行培训和平衡表现。
translated by 谷歌翻译
This work tackles the problem of semi-supervised learning of image classifiers. Our main insight is that the field of semi-supervised learning can benefit from the quickly advancing field of self-supervised visual representation learning. Unifying these two approaches, we propose the framework of self-supervised semi-supervised learning (S 4 L) and use it to derive two novel semi-supervised image classification methods. We demonstrate the effectiveness of these methods in comparison to both carefully tuned baselines, and existing semi-supervised learning methods. We then show that S 4 L and existing semi-supervised methods can be jointly trained, yielding a new state-of-the-art result on semi-supervised ILSVRC-2012 with 10% of labels.
translated by 谷歌翻译
我们提出了Parse,这是一种新颖的半监督结构,用于学习强大的脑电图表现以进行情感识别。为了减少大量未标记数据与标记数据有限的潜在分布不匹配,Parse使用成对表示对准。首先,我们的模型执行数据增强,然后标签猜测大量原始和增强的未标记数据。然后将其锐化的标签和标记数据的凸组合锐化。最后,进行表示对准和情感分类。为了严格测试我们的模型,我们将解析与我们实施并适应脑电图学习的几种最先进的半监督方法进行了比较。我们对四个基于公共EEG的情绪识别数据集,种子,种子IV,种子V和Amigos(价和唤醒)进行这些实验。该实验表明,我们提出的框架在种子,种子-IV和Amigos(Valence)中的标记样品有限的情况下,取得了总体最佳效果,同时接近种子V和Amigos中的总体最佳结果(达到第二好) (唤醒)。分析表明,我们的成对表示对齐方式通过减少未标记数据和标记数据之间的分布比对来大大提高性能,尤其是当每类仅1个样本被标记时。
translated by 谷歌翻译
基于伪标签的半监督学习(SSL)在原始数据利用率上取得了巨大的成功。但是,由于自我生成的人工标签中包含的噪声,其训练程序受到确认偏差的影响。此外,该模型的判断在具有广泛分布数据的现实应用程序中变得更加嘈杂。为了解决这个问题,我们提出了一种名为“班级意识的对比度半监督学习”(CCSSL)的通用方法,该方法是提高伪标签质量并增强现实环境中模型的稳健性的插手。我们的方法不是将现实世界数据视为一个联合集合,而是分别处理可靠的分布数据,并将其融合到下游任务中,并将其与图像对比度融合到下游任务中,以更好地泛化。此外,通过应用目标重新加权,我们成功地强调了清洁标签学习,并同时减少嘈杂的标签学习。尽管它很简单,但我们提出的CCSSL比标准数据集CIFAR100和STL10上的最新SSL方法具有显着的性能改进。在现实世界数据集Semi-Inat 2021上,我们将FixMatch提高了9.80%,并提高了3.18%。代码可用https://github.com/tencentyouturesearch/classification-spoomls。
translated by 谷歌翻译
在这项工作中,我们建议相互分布对准(RDA)解决半监督学习(SSL),该学习是一个无主参数框架,与置信阈值无关,并与匹配的(常规)和不匹配的类别分布一起工作。分布不匹配是一个经常被忽略但更通用的SSL场景,在该场景中,标记和未标记的数据不属于相同的类别分布。这可能导致该模型不利用标记的数据可靠,并大大降低SSL方法的性能,而传统的分布对齐无法挽救。在RDA中,我们对来自两个分类器的预测分布进行了相互对准,这些分类器预测了未标记的数据上的伪标签和互补标签。携带补充信息的这两个分布可用于相互正规化,而无需任何课堂分布。此外,我们从理论上显示RDA最大化输入输出互信息。我们的方法在各种不匹配的分布以及常规匹配的SSL设置的情况下,在SSL中实现了有希望的性能。我们的代码可在以下网址提供:https://github.com/njuyued/rda4robustssl。
translated by 谷歌翻译