Partial label learning (PLL) is an important problem that allows each training example to be labeled with a coarse candidate set, which well suits many real-world data annotation scenarios with label ambiguity. Despite the promise, the performance of PLL often lags behind the supervised counterpart. In this work, we bridge the gap by addressing two key research challenges in PLL -- representation learning and label disambiguation -- in one coherent framework. Specifically, our proposed framework PiCO consists of a contrastive learning module along with a novel class prototype-based label disambiguation algorithm. PiCO produces closely aligned representations for examples from the same classes and facilitates label disambiguation. Theoretically, we show that these two components are mutually beneficial, and can be rigorously justified from an expectation-maximization (EM) algorithm perspective. Moreover, we study a challenging yet practical noisy partial label learning setup, where the ground-truth may not be included in the candidate set. To remedy this problem, we present an extension PiCO+ that performs distance-based clean sample selection and learns robust classifiers by a semi-supervised contrastive learning algorithm. Extensive experiments demonstrate that our proposed methods significantly outperform the current state-of-the-art approaches in standard and noisy PLL tasks and even achieve comparable results to fully supervised learning.
translated by 谷歌翻译
在对比学习中,最近的进步表现出了出色的表现。但是,绝大多数方法仅限于封闭世界的环境。在本文中,我们通过挖掘开放世界的环境来丰富表示学习的景观,其中新颖阶级的未标记样本自然可以在野外出现。为了弥合差距,我们引入了一个新的学习框架,开放世界的对比学习(Opencon)。Opencon应对已知和新颖阶级学习紧凑的表现的挑战,并促进了一路上的新颖性发现。我们证明了Opencon在挑战基准数据集中的有效性并建立竞争性能。在Imagenet数据集上,Opencon在新颖和总体分类精度上分别胜过当前最佳方法的最佳方法,分别胜过11.9%和7.4%。我们希望我们的工作能为未来的工作打开新的大门,以解决这一重要问题。
translated by 谷歌翻译
部分标签学习(PLL)是一项奇特的弱监督学习任务,其中训练样本通常与一组候选标签而不是单个地面真理相关联。尽管在该域中提出了各种标签歧义方法,但他们通常假设在许多现实世界应用中可能不存在类平衡的方案。从经验上讲,我们在面对长尾分布和部分标记的组合挑战时观察到了先前方法的退化性能。在这项工作中,我们首先确定先前工作失败的主要原因。随后,我们提出了一种新型的基于最佳运输的框架太阳能,它允许完善被歧义的标签,以匹配边缘级别的先验分布。太阳能还结合了一种新的系统机制,用于估计PLL设置下的长尾类先验分布。通过广泛的实验,与先前的最先进的PLL方法相比,太阳能在标准化基准方面表现出基本优势。代码和数据可在以下网址获得:https://github.com/hbzju/solar。
translated by 谷歌翻译
在标签噪声下训练深神网络的能力很有吸引力,因为不完美的注释数据相对便宜。最先进的方法基于半监督学习(SSL),该学习选择小损失示例为清洁,然后应用SSL技术来提高性能。但是,选择步骤主要提供一个中等大小的清洁子集,该子集可俯瞰丰富的干净样品。在这项工作中,我们提出了一个新颖的嘈杂标签学习框架Promix,试图最大程度地提高清洁样品的实用性以提高性能。我们方法的关键是,我们提出了一种匹配的高信心选择技术,该技术选择了那些具有很高置信的示例,并与给定标签进行了匹配的预测。结合小损失选择,我们的方法能够达到99.27的精度,并在检测CIFAR-10N数据集上的干净样品时召回98.22。基于如此大的清洁数据,Promix将最佳基线方法提高了CIFAR-10N的 +2.67%,而CIFAR-100N数据集则提高了 +1.61%。代码和数据可从https://github.com/justherozen/promix获得
translated by 谷歌翻译
使用嘈杂标签(LNL)学习旨在设计策略来通过减轻模型过度适应嘈杂标签的影响来提高模型性能和概括。 LNL的主要成功在于从大量嘈杂数据中识别尽可能多的干净样品,同时纠正错误分配的嘈杂标签。最近的进步采用了单个样品的预测标签分布来执行噪声验证和嘈杂的标签校正,很容易产生确认偏差。为了减轻此问题,我们提出了邻里集体估计,其中通过将其与其功能空间最近的邻居进行对比,重新估计了候选样本的预测性可靠性。具体而言,我们的方法分为两个步骤:1)邻域集体噪声验证,将所有训练样品分为干净或嘈杂的子集,2)邻里集体标签校正到Relabel嘈杂样品,然后使用辅助技术来帮助进一步的模型优化。 。在四个常用基准数据集(即CIFAR-10,CIFAR-100,Clothing-1M和WebVision-1.0)上进行了广泛的实验,这表明我们提出的方法非常优于最先进的方法。
translated by 谷歌翻译
现有的深度聚类方法依赖于对比学习的对比学习,这需要否定例子来形成嵌入空间,其中所有情况都处于良好分离状态。但是,否定的例子不可避免地引起阶级碰撞问题,损害了群集的表示学习。在本文中,我们探讨了对深度聚类的非对比表示学习,被称为NCC,其基于Byol,一种没有负例的代表性方法。首先,我们建议将一个增强的实例与嵌入空间中的另一个视图的邻居对齐,称为正抽样策略,该域避免了由否定示例引起的类碰撞问题,从而提高了集群内的紧凑性。其次,我们建议鼓励在所有原型中的一个原型和均匀性的两个增强视图之间的对准,命名的原型是原型的对比损失或protocl,这可以最大化簇间距离。此外,我们在期望 - 最大化(EM)框架中制定了NCC,其中E-Step利用球面K手段来估计实例的伪标签和来自目标网络的原型的分布,并且M-Step利用了所提出的损失优化在线网络。结果,NCC形成了一个嵌入空间,其中所有集群都处于分离良好,而内部示例都很紧凑。在包括ImageNet-1K的几个聚类基准数据集上的实验结果证明了NCC优于最先进的方法,通过显着的余量。
translated by 谷歌翻译
Partial label learning (PLL) is a typical weakly supervised learning, where each sample is associated with a set of candidate labels. The basic assumption of PLL is that the ground-truth label must reside in the candidate set. However, this assumption may not be satisfied due to the unprofessional judgment of the annotators, thus limiting the practical application of PLL. In this paper, we relax this assumption and focus on a more general problem, noisy PLL, where the ground-truth label may not exist in the candidate set. To address this challenging problem, we further propose a novel framework called "Automatic Refinement Network (ARNet)". Our method consists of multiple rounds. In each round, we purify the noisy samples through two key modules, i.e., noisy sample detection and label correction. To guarantee the performance of these modules, we start with warm-up training and automatically select the appropriate correction epoch. Meanwhile, we exploit data augmentation to further reduce prediction errors in ARNet. Through theoretical analysis, we prove that our method is able to reduce the noise level of the dataset and eventually approximate the Bayes optimal classifier. To verify the effectiveness of ARNet, we conduct experiments on multiple benchmark datasets. Experimental results demonstrate that our ARNet is superior to existing state-of-the-art approaches in noisy PLL. Our code will be made public soon.
translated by 谷歌翻译
部分标签学习(PLL)是一个典型的弱监督学习框架,每个培训实例都与候选标签集相关联,其中只有一个标签是有效的。为了解决PLL问题,通常方法试图通过使用先验知识(例如培训数据的结构信息)或以自训练方式提炼模型输出来对候选人集进行歧义。不幸的是,由于在模型训练的早期阶段缺乏先前的信息或不可靠的预测,这些方法通常无法获得有利的性能。在本文中,我们提出了一个新的针对部分标签学习的框架,该框架具有元客观指导性的歧义(MOGD),该框架旨在通过在小验证集中求解元目标来从设置的候选标签中恢复地面真相标签。具体而言,为了减轻假阳性标签的负面影响,我们根据验证集的元损失重新权重。然后,分类器通过最大程度地减少加权交叉熵损失来训练。通过使用普通SGD优化器的各种深网络可以轻松实现所提出的方法。从理论上讲,我们证明了元目标的收敛属性,并得出了所提出方法的估计误差界限。在各种基准数据集和实际PLL数据集上进行的广泛实验表明,与最先进的方法相比,所提出的方法可以实现合理的性能。
translated by 谷歌翻译
This paper presents Prototypical Contrastive Learning (PCL), an unsupervised representation learning method that bridges contrastive learning with clustering. PCL not only learns low-level features for the task of instance discrimination, but more importantly, it encodes semantic structures discovered by clustering into the learned embedding space. Specifically, we introduce prototypes as latent variables to help find the maximum-likelihood estimation of the network parameters in an Expectation-Maximization framework. We iteratively perform E-step as finding the distribution of prototypes via clustering and M-step as optimizing the network via contrastive learning. We propose ProtoNCE loss, a generalized version of the InfoNCE loss for contrastive learning, which encourages representations to be closer to their assigned prototypes. PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks with substantial improvement in low-resource transfer learning. Code and pretrained models are available at https://github.com/salesforce/PCL.
translated by 谷歌翻译
Although existing semi-supervised learning models achieve remarkable success in learning with unannotated in-distribution data, they mostly fail to learn on unlabeled data sampled from novel semantic classes due to their closed-set assumption. In this work, we target a pragmatic but under-explored Generalized Novel Category Discovery (GNCD) setting. The GNCD setting aims to categorize unlabeled training data coming from known and novel classes by leveraging the information of partially labeled known classes. We propose a two-stage Contrastive Affinity Learning method with auxiliary visual Prompts, dubbed PromptCAL, to address this challenging problem. Our approach discovers reliable pairwise sample affinities to learn better semantic clustering of both known and novel classes for the class token and visual prompts. First, we propose a discriminative prompt regularization loss to reinforce semantic discriminativeness of prompt-adapted pre-trained vision transformer for refined affinity relationships. Besides, we propose a contrastive affinity learning stage to calibrate semantic representations based on our iterative semi-supervised affinity graph generation method for semantically-enhanced prompt supervision. Extensive experimental evaluation demonstrates that our PromptCAL method is more effective in discovering novel classes even with limited annotations and surpasses the current state-of-the-art on generic and fine-grained benchmarks (with nearly $11\%$ gain on CUB-200, and $9\%$ on ImageNet-100) on overall accuracy.
translated by 谷歌翻译
我们研究了用于半监控学习(SSL)的无监督数据选择,其中可以提供大规模的未标记数据集,并且为标签采集预算小额数据子集。现有的SSL方法专注于学习一个有效地集成了来自给定小标记数据和大型未标记数据的信息的模型,而我们专注于选择正确的数据以用于SSL的注释,而无需任何标签或任务信息。直观地,要标记的实例应统称为下游任务的最大多样性和覆盖范围,并且单独具有用于SSL的最大信息传播实用程序。我们以三步数据为中心的SSL方法形式化这些概念,使稳定性和精度的纤维液改善8%的CiFar-10(标记为0.08%)和14%的Imagenet -1k(标记为0.2%)。它也是一种具有各种SSL方法的通用框架,提供一致的性能增益。我们的工作表明,在仔细选择注释数据上花费的小计算带来了大注释效率和模型性能增益,而无需改变学习管道。我们完全无监督的数据选择可以轻松扩展到其他弱监督的学习设置。
translated by 谷歌翻译
Semi-supervised learning based methods are current SOTA solutions to the noisy-label learning problem, which rely on learning an unsupervised label cleaner first to divide the training samples into a labeled set for clean data and an unlabeled set for noise data. Typically, the cleaner is obtained via fitting a mixture model to the distribution of per-sample training losses. However, the modeling procedure is \emph{class agnostic} and assumes the loss distributions of clean and noise samples are the same across different classes. Unfortunately, in practice, such an assumption does not always hold due to the varying learning difficulty of different classes, thus leading to sub-optimal label noise partition criteria. In this work, we reveal this long-ignored problem and propose a simple yet effective solution, named \textbf{C}lass \textbf{P}rototype-based label noise \textbf{C}leaner (\textbf{CPC}). Unlike previous works treating all the classes equally, CPC fully considers loss distribution heterogeneity and applies class-aware modulation to partition the clean and noise data. CPC takes advantage of loss distribution modeling and intra-class consistency regularization in feature space simultaneously and thus can better distinguish clean and noise labels. We theoretically justify the effectiveness of our method by explaining it from the Expectation-Maximization (EM) framework. Extensive experiments are conducted on the noisy-label benchmarks CIFAR-10, CIFAR-100, Clothing1M and WebVision. The results show that CPC consistently brings about performance improvement across all benchmarks. Codes and pre-trained models will be released at \url{https://github.com/hjjpku/CPC.git}.
translated by 谷歌翻译
元学习已成为几乎没有图像分类的实用方法,在该方法中,“学习分类器的策略”是在标记的基础类别上进行元学习的,并且可以应用于具有新颖类的任务。我们删除了基类标签的要求,并通过无监督的元学习(UML)学习可通用的嵌入。具体而言,任务发作是在元训练过程中使用未标记的基本类别的数据增强构建的,并且我们将基于嵌入式的分类器应用于新的任务,并在元测试期间使用标记的少量示例。我们观察到两个元素在UML中扮演着重要角色,即进行样本任务和衡量实例之间的相似性的方法。因此,我们获得了具有两个简单修改的​​强基线 - 一个足够的采样策略,每情节有效地构建多个任务以及半分解的相似性。然后,我们利用来自两个方向的任务特征以获得进一步的改进。首先,合成的混淆实例被合并以帮助提取更多的判别嵌入。其次,我们利用额外的特定任务嵌入转换作为元训练期间的辅助组件,以促进预先适应的嵌入式的概括能力。几乎没有学习基准的实验证明,我们的方法比以前的UML方法优于先前的UML方法,并且比其监督变体获得了可比甚至更好的性能。
translated by 谷歌翻译
通过对比学习,自我监督学习最近在视觉任务中显示了巨大的潜力,这旨在在数据集中区分每个图像或实例。然而,这种情况级别学习忽略了实例之间的语义关系,有时不希望地从语义上类似的样本中排斥锚,被称为“假否定”。在这项工作中,我们表明,对于具有更多语义概念的大规模数据集来说,虚假否定的不利影响更为重要。为了解决这个问题,我们提出了一种新颖的自我监督的对比学习框架,逐步地检测并明确地去除假阴性样本。具体地,在训练过程之后,考虑到编码器逐渐提高,嵌入空间变得更加语义结构,我们的方法动态地检测增加的高质量假否定。接下来,我们讨论两种策略,以明确地在对比学习期间明确地消除检测到的假阴性。广泛的实验表明,我们的框架在有限的资源设置中的多个基准上表现出其他自我监督的对比学习方法。
translated by 谷歌翻译
半监督学习(SSL)是解决监督学习的注释瓶颈的主要方法之一。最近的SSL方法可以有效利用大量未标记数据的存储库来提高性能,同时依靠一小部分标记数据。在大多数SSL方法中,一个常见的假设是,标记和未标记的数据来自同一基础数据分布。但是,在许多实际情况下,情况并非如此,这限制了其适用性。相反,在这项工作中,我们试图解决最近提出的挑战性的开放世界SSL问题,这些问题并非如此。在开放世界的SSL问题中,目的是识别已知类别的样本,并同时检测和群集样品属于未标记数据中的新型类别。这项工作引入了OpenLDN,该OpenLDN利用成对的相似性损失来发现新颖的类别。使用双层优化规则,此成对相似性损失利用了标记的设置中可用的信息,以隐式群集新颖的类样本,同时识别来自已知类别的样本。在发现新颖的类别后,OpenLDN将Open-World SSL问题转换为标准SSL问题,以使用现有的SSL方法实现额外的性能提高。我们的广泛实验表明,OpenLDN在多个流行的分类基准上胜过当前的最新方法,同时提供了更好的准确性/培训时间权衡。
translated by 谷歌翻译
半监督学习(SSL)是规避建立高性能模型的昂贵标签成本的最有前途的范例之一。大多数现有的SSL方法常规假定标记和未标记的数据是从相同(类)分布中绘制的。但是,在实践中,未标记的数据可能包括课外样本;那些不能从标签数据中的封闭类中的单热编码标签,即未标记的数据是开放设置。在本文中,我们介绍了Opencos,这是一种基于最新的自我监督视觉表示学习框架来处理这种现实的半监督学习方案。具体而言,我们首先观察到,可以通过自我监督的对比度学习有效地识别开放式未标记数据集中的类外样本。然后,Opencos利用此信息来克服现有的最新半监督方法中的故障模式,通过利用一式旋转伪标签和软标签来为已识别的识别和外部未标记的标签数据分别。我们广泛的实验结果表明了Opencos的有效性,可以修复最新的半监督方法,适合涉及开放式无标记数据的各种情况。
translated by 谷歌翻译
从一个非常少数标记的样品中学习新颖的课程引起了机器学习区域的越来越高。最近关于基于元学习或转移学习的基于范例的研究表明,良好特征空间的获取信息可以是在几次拍摄任务上实现有利性能的有效解决方案。在本文中,我们提出了一种简单但有效的范式,该范式解耦了学习特征表示和分类器的任务,并且只能通过典型的传送学习培训策略从基类嵌入体系结构的特征。为了在每个类别内保持跨基地和新类别和辨别能力的泛化能力,我们提出了一种双路径特征学习方案,其有效地结合了与对比特征结构的结构相似性。以这种方式,内部级别对齐和级别的均匀性可以很好地平衡,并且导致性能提高。三个流行基准测试的实验表明,当与简单的基于原型的分类器结合起来时,我们的方法仍然可以在电感或转换推理设置中的标准和广义的几次射击问题达到有希望的结果。
translated by 谷歌翻译
Semi-supervised learning (SSL) has achieved great success in leveraging a large amount of unlabeled data to learn a promising classifier. A popular approach is pseudo-labeling that generates pseudo labels only for those unlabeled data with high-confidence predictions. As for the low-confidence ones, existing methods often simply discard them because these unreliable pseudo labels may mislead the model. Nevertheless, we highlight that these data with low-confidence pseudo labels can be still beneficial to the training process. Specifically, although the class with the highest probability in the prediction is unreliable, we can assume that this sample is very unlikely to belong to the classes with the lowest probabilities. In this way, these data can be also very informative if we can effectively exploit these complementary labels, i.e., the classes that a sample does not belong to. Inspired by this, we propose a novel Contrastive Complementary Labeling (CCL) method that constructs a large number of reliable negative pairs based on the complementary labels and adopts contrastive learning to make use of all the unlabeled data. Extensive experiments demonstrate that CCL significantly improves the performance on top of existing methods. More critically, our CCL is particularly effective under the label-scarce settings. For example, we yield an improvement of 2.43% over FixMatch on CIFAR-10 only with 40 labeled data.
translated by 谷歌翻译
Semi-supervised learning (SSL) provides an effective means of leveraging unlabeled data to improve a model's performance. This domain has seen fast progress recently, at the cost of requiring more complex methods. In this paper we propose FixMatch, an algorithm that is a significant simplification of existing SSL methods. FixMatch first generates pseudo-labels using the model's predictions on weaklyaugmented unlabeled images. For a given image, the pseudo-label is only retained if the model produces a high-confidence prediction. The model is then trained to predict the pseudo-label when fed a strongly-augmented version of the same image. Despite its simplicity, we show that FixMatch achieves state-of-the-art performance across a variety of standard semi-supervised learning benchmarks, including 94.93% accuracy on CIFAR-10 with 250 labels and 88.61% accuracy with 40 -just 4 labels per class. We carry out an extensive ablation study to tease apart the experimental factors that are most important to FixMatch's success. The code is available at https://github.com/google-research/fixmatch.
translated by 谷歌翻译
深度学习的最新进展依赖于大型标签的数据集来培训大容量模型。但是,以时间和成本效益的方式收集大型数据集通常会导致标签噪声。我们提出了一种从嘈杂的标签中学习的方法,该方法利用特征空间中的训练示例之间的相似性,鼓励每个示例的预测与其最近的邻居相似。与使用多个模型或不同阶段的训练算法相比,我们的方法采用了简单,附加的正规化项的形式。它可以被解释为经典的,偏置标签传播算法的归纳版本。我们在数据集上彻底评估我们的方法评估合成(CIFAR-10,CIFAR-100)和现实(迷你网络,网络vision,Clotsing1m,Mini-Imagenet-Red)噪声,并实现竞争性或最先进的精度,在所有人之间。
translated by 谷歌翻译