本文介绍了基于织物的软气动执行器的设计和评估,其驱动需要低压要求,使其适用于婴儿的上肢辅助设备。目的是支持肩部绑架和内收,而无需禁止在其他平面上运动或阻塞肘关节运动。首先,通过模拟探索了具有内部空气电池的执行器设计家族的性能。执行器通过细胞数量及其宽度进行参数化。通过硬件实验进一步测试了通过模拟鉴定的物理可行的致动器变体。选择并根据婴儿的身体人为测量学的定制物理模型选择并测试两种设计。施加施加手臂的力,运动平滑度,路径长度和最大肩部角度的比较,请告知哪种设计更适合用作儿科可穿戴辅助设备的执行器,以及其他用于未来工作的见解。
translated by 谷歌翻译
这项工作着重于基于气动式柔软可穿戴设备的本体感受反馈的闭环控制,旨在将来支持婴儿完成任务。该设备包括两个柔软的气动执行器(一个基于纺织品和一个硅胶铸造),可积极控制每个手臂的两个自由度(分别为肩部内收/绑架和肘部屈曲/扩展)。可穿戴设备附加的惯性测量单元(IMU)提供实时关节角度反馈。通过文献中报道的婴儿(ARM长度)的人体测量数据来告知设备运动学分析。婴儿到达中的运动和肌肉共同激活模式被认为是为设备的最终效应器提供所需的轨迹。然后,开发了一个比例衍生的控制器来调节执行器内部的压力,然后沿着可及工作空间内的所需设定点移动手臂。提出了有关使用工程模特的跟踪所需的臂轨迹的实验结果,表明所提出的控制器可以帮助指导人体模特的腕部到达所需的设定点。
translated by 谷歌翻译
虽然在各种应用中广泛使用刚性机器人,但它们在他们可以执行的任务中受到限制,并且在密切的人机交互中可以保持不安全。另一方面,软机器鞋面超越了刚性机器人的能力,例如与工作环境,自由度,自由度,制造成本和与环境安全互动的兼容性。本文研究了纤维增强弹性机壳(释放)作为一种特定类型的软气动致动器的行为,可用于软装饰器。创建动态集参数模型以在各种操作条件下模拟单一免费的运动,并通知控制器的设计。所提出的PID控制器使用旋转角度来控制多项式函数之后的自由到限定的步进输入或轨迹的响应来控制末端执行器的方向。另外,采用有限元分析方法,包括释放的固有非线性材料特性,精确地评估释放的各种参数和配置。该工具还用于确定模块中多个释放的工作空间,这基本上是软机械臂的构建块。
translated by 谷歌翻译
外骨骼和矫形器是可穿戴移动系统,为用户提供机械益处。尽管在过去几十年中有重大改进,但该技术不会完全成熟,以便采用剧烈和非编程任务。为了适应这种功能不全,需要分析和改进该技术的不同方面。许多研究一直在努力解决外骨骼的某些方面,例如,机构设计,意向预测和控制方案。但是,大多数作品都专注于设计或应用的特定元素,而无需提供全面的审查框架。本研究旨在分析和调查为改进和广泛采用这项技术的贡献方面。为了解决此问题,在引入辅助设备和外骨骼后,将从物理人员 - 机器人接口(HRI)的角度来研究主要的设计标准。通过概述不同类别的已知辅助设备的几个例子,将进一步开发该研究。为了建立智能HRI策略并为用户提供直观的控制,将研究认知HRI。将审查这种策略的各种方法,并提出了意图预测的模型。该模型用于从单个电拍摄(EMG)通道输入的栅极相位。建模结果显示出低功耗辅助设备中单通道输入的潜在使用。此外,所提出的模型可以在具有复杂控制策略的设备中提供冗余。
translated by 谷歌翻译
超级机器人四肢(SRL)是可穿戴的机器人,通过充当同事,到达物体,支撑人的武器等来增强人类能力。但是,现有的SRL缺乏可控制互动力所需的机械背景和带宽作为绘画,操纵脆弱的物体等。具有高带宽的高度背景,而最小化重量则带来了由常规电磁执行器的有限表现施加的重大技术挑战。本文研究了使用磁性(MR)离合器耦合到低摩擦式静液传动的可行性,以提供高功能强大但可轻巧,可控制的SRL。设计和建造了2.7千克二线可穿戴机器人手臂。肩膀和肘关节的设计可提供39和25 nm,运动范围为115和180 {\ deg}。在一氧化基督测试台上进行的实验研究并在分析上进行了验证,即使在与外部阻抗相互作用时,也表明了高力带宽(> 25 Hz),并且能够控制相互作用的能力。此外,研究并通过实验研究了三种力对照方法:开环,闭环力和压力上的闭环。所有三种方法均显示为有效。总体而言,拟议的MR-Hydrstoratic致动系统非常适合与人类和环境相互作用的轻量级SRL,从而增加了无法预测的干扰。
translated by 谷歌翻译
结肠镜检查被认为是下层胃肠道(GI)癌症筛查的黄金标准,考虑到降低推荐的筛查年龄,全世界的筛查计划。尽管如此,由于结肠镜和结肠壁之间发生的力,常规结肠镜检查可能会给患者带来不适。已经提出了机器人解决方案,以减少不适感,并提高可访问性和图像质量。为了解决传统和机器人结肠镜检查的局限性,在本文中,我们介绍了软屏幕系统,这是一种基于Eversion导航的新型软性形状胶囊机器人,用于内窥镜检查。多个轨道围绕着系统的身体。这些轨道是由单个电动机搭配蠕虫齿轮和内部刚性底盘的Evert驱动的,从而使基于完整的轨道导航。两个可充气的环形腔室封闭了这个刚性底盘并穿过轨道,使它们在膨胀时取代。该位移可用于调节与周围壁的接触,从而实现牵引力控制并调整整体直径以匹配本地管腔尺寸。在这项工作中介绍了第一个束缚原型在2:1尺度下的系带原型的设计。实验结果显示了不同管腔直径和曲率的有效导航能力,为能够强大导航和可靠控制成像的新型机器人铺平了道路,并具有超出结肠镜检查的应用,包括胃镜检查和胶囊内窥镜检查。
translated by 谷歌翻译
意识到高性能软机器人抓手是具有挑战性的,因为软执行器和人造肌肉的固有局限性。尽管现有的软机器人抓手表现出可接受的性能,但他们的设计和制造仍然是一个空旷的问题。本文探索了扭曲的弦乐执行器(TSA),以驱动软机器人抓手。 TSA已被广泛用于众多机器人应用中,但它们包含在软机器人中是有限的。提议的抓手设计灵感来自人类手,四个手指和拇指。通过使用拮抗剂TSA,在手指中实现了可调刚度。手指的弯曲角度,驱动速度,阻塞力输出和刚度调整是实验表征的。抓手能够在Kapandji测试中获得6分,并且还可以达到33个Feix Grasp Grasp分类法中的31个。一项比较研究表明,与其他类似抓手相比,提出的抓手表现出等效或卓越的性能。
translated by 谷歌翻译
基于手势的界面通常用于实现更自然和直观的机器人遥气操作。然而,有时候,手势控制需要对用户造成显着疲劳的姿势或运动。在先前的用户学习中,我们证明了NA \“IVE用户可以在其武器展开时控制具有躯干运动的固定翼无人机。然而,这种姿势诱导了重要的手臂疲劳。在这项工作中,我们展示了一款被动臂支撑这补偿了手臂重量,平均扭矩误差小于0.005n / kg,超过0.005n / kg的受试者使用的运动范围的97%以上,因此平均降低肩部的肌肉疲劳。此外,这臂支持旨在将5百分位数的身体尺寸的用户融入第99百分位的男性。使用机械模型描述了臂支架的性能分析,并且其实现是用机械表征和用户学习验证的测量飞行性能,肩部肌肉活动和用户验收。
translated by 谷歌翻译
软机器人操纵器对于在受限环境中的医疗干预或工业检查等一系列应用都具有吸引力。文献中已经提出了无数的软机器人操纵器,但是它们的设计往往相对相似,并且通常提供相对较低的力。这限制了他们可以携带的有效载荷,因此限制了它们的可用性。在公共框架下不可用不同设计的力的比较,并且设计具有不同的直径和功能,使它们难以比较。在本文中,我们介绍了一种软机器人操纵器的设计,该设计的优化为最大化其力,同时尊重典型的应用程序约束,例如大小,工作区,有效负载能力和最大压力。此处介绍的设计具有一个优势,即它变为最佳设计,因为它被加压到朝不同方向移动,这会导致较高的横向力。该机器人是使用一组原理设计的,因此可以适应其他应用程序。我们还为软机器人操纵器提供了非二维分析,并将其应用于此处提出的设计的性能与文献中其他设计的性能。我们表明,我们的设计比同一类别中的其他设计具有更高的力量。实验结果证实了我们提出的设计的较高力量。
translated by 谷歌翻译
中枢神经系统(CNS)利用预期(APA)和补偿性(CPA)的姿势调整以保持平衡。姿势调整包括质量中心的稳定性(COM)(COM)和身体的压力分布相互影响,如果存在他们俩缺乏表现。任何可预测的或突然的扰动都可能为COM与平衡和身体的均匀压力分布的分歧铺平道路。由于其不良的APA和CPA,并引起了它们的跌倒。神经系统患者跌倒风险的最小化方法正在利用基于扰动的康复,因为它有效地恢复了平衡障碍。根据发现的结果,我们的发现,我们的发现,我们的发现,我们的发现,我们的发现,我们的发现是有效的。介绍新型3 DOF平行操纵器的设计,实现和实验评估,以治疗M. M.的平衡障碍,机器人平台允许角运动脚踝基于其拟人化的自由。赋予上下平台的最终效应分别旨在评估每只脚的压力分布和身体的com。在机器人平台的高级控制中,用于调节任务的难度水平。在这项研究中,在模拟环境中得出并验证了机器人的运动学和动态分析。还通过PID控制器成功实现了对原型的低级控制。每个平台的容量都通过一组实验来评估,考虑评估最终效应器上的脚注和类似对象的压力分布和COM。实验结果表明,这样的系统井井有条,需要通过APA和CPA进行平衡技能培训和评估。
translated by 谷歌翻译
软气动执行器已经在许多软机器人系统中看到了应用,其压力驱动的性质提出了控制其运动的独特挑战和机会。在这项工作中,我们提出了一个新概念:通过末端几何形状设计和控制气动执行器。我们演示了一个新颖的执行器类,称为折叠气动人造肌肉(Foldpam),该肌肉具有一个薄纤维的空气袋,两侧对称折叠。改变执行器的折叠部分会改变最终约束,从而改变力 - 应变关系。我们通过测量具有各种长度和折叠量的单个foldpam单元的力 - 应变关系来实验研究这一变化。除静态几何单元外,驱动的FOLDPAM设备还设计为产生末端几何形状的连续,按需调整,从而实现闭环位置控制,同时保持恒定压力。使用设备的实验表明几何控制允许进入力 - 应变平面上的不同区域,并且闭环几何控制可以在驱动范围的0.5%以内实现误差。
translated by 谷歌翻译
后空飞行是一种水生昆虫,能够在水下调节其浮力。它的腹部被血红蛋白细胞覆盖,用于啮合和释放氧气,可逆地。进入水后,飞捕口在其腹部的超疏水毛状结构中的气泡进行呼吸。然而,这种泡沫可以通过来自腹部血红蛋白细胞的调节氧气流动来改变其体积。通过这种方式,它可以达到中性浮力而无需进一步的能量消耗。在这项研究中,我们开发了一种小,厘米的刻度,通过受控成核和释放微泡的自动浮力调节来发展一小厘米。气泡通过电解,直接在板载电极上直接生长,通过低电压调节。我们使用3D打印来引入三维气泡诱捕的蜂窝结构,以创造一个稳定的外部气体储层。为了减少浮力力,气泡通过线性机械振动释放,从机器人的身体分离。通过压力传感和比例整体衍生控制回路机构,机器人自动调节其浮力,以在几秒钟内水下达到中性浮动。这种机制可以促进更换传统和物理上更大的浮力调节系统,如活塞和加压罐,并能够实现自主水下车辆的小型化。
translated by 谷歌翻译
在最近的过去,草莓的机器人收获引起了很多兴趣。尽管有很多创新,但它们尚未达到与人类采摘专家相当的水平。末端效应单元在定义这种机器人收割系统的效率方面起着重要作用。即使有关于草莓收集的各种最终效应子的报道,但是在某些情况下,研究人员可以依靠某些参数来开发新的最终效应子。这些参数包括可以在花梗上应用的抓地力极限,以有效地抓握,切割草莓花梗所需的力等。这些估计将对目标的最终效应器的设计周期有所帮助,以握住和切割在收获动作期间,草莓花梗。本文通过实验研究了这些参数的估计和分析。据估计,花梗的握力可以限制为10N。这使最终效应器能够抓住高达50克的草莓,而操纵加速度为50 m/s $^2 $,而不会挤压花梗。关于花梗切割力的研究表明,15 n的力足以在30度方向上使用楔形角度为16.6度的刀片切出草莓花梗。
translated by 谷歌翻译
软致动器在符合性和形态方面表现出具有很大的优势,用于操纵细腻物体和在密闭空间中的检查。对于可以提供扭转运动的软致动器有一个未满足的需要。放大工作空间并增加自由度。为此目标,我们呈现由硅胶制成的折纸启发的软充气执行器(OSPas)。原型可以输出多于一个旋转的旋转(高达435 {\ DEG}),比以前的同行更大。我们描述了设计和制作方法,构建了运动学模型和仿真模型,并分析和优化参数。最后,我们通过整合到能够同时抓住和提升脆弱或扁平物体的夹具,这是一种能够与扭转致动器的直角拾取和放置物品的多功能机器人,以及柔软的蛇通过扭转致动器的扭转能够改变姿态和方向的机器人。
translated by 谷歌翻译
人类无法访问许多空间,机器人可以帮助传感器和设备提供。这些空间中有许多包含三维通道和不均匀的地形,这些通道对机器人设计和控制构成了挑战。通过同时进行的远处和体材料反转移动的环形机器人有望在这些类型的空间中导航。我们提出了一种新型的柔软的环形机器人,该机器人在充满空气的膜内使用电动设备推动自己推动自己。我们的机器人只需要一个控制信号即可移动,可以符合其环境,并且可以垂直爬上电动机扭矩,该电动机与用来支撑机器人对环境的力无关。我们得出并验证了其运动所涉及的力的模型,并演示了机器人导航迷宫和攀登管道的能力。
translated by 谷歌翻译
空中触觉创造了一种新的反馈方式,以使人们能够在空中感觉到触觉。超声波阵列聚焦在空间中的声音辐射压力,以引起由此产生的皮肤偏转的触觉感觉。在这项工作中,我们提出了一个低成本的触觉机器人,以测试空中触觉。通过将桌面机器人组与3D打印的仿生触觉传感器相结合,我们开发了一个可以感知,映射和可视化超声传感器阵列产生的空气触觉感觉的系统。我们通过对各种空气中的触觉刺激进行测试,包括未经调节和调节的焦点来评估触觉机器人。我们将刺激的映射与用于测试空气中触觉的另一种方法的映射:激光多普勒振动法,突出了触觉机器人的优势,包括较低的成本,轻巧的表格因子和易用性。总体而言,这些发现表明我们的方法具有感知空气中触觉的多重好处,并为扩展测试以更好地模仿人触觉感知开辟了新的可能性。
translated by 谷歌翻译
软机器人抓手具有许多优势,可以解决动态空中抓握方面的挑战。最近展示的用于空中抓握的典型多指的软握把高度依赖于成功抓握的目标对象的方向。这项研究通过开发一种用于自主空气操纵的全向系统来推动动态空中抓地力的边界。特别是,该论文研究了一种新型,高度集成,模块化,传感器富含通用的握把的设计,制造和实验验证,专为空中应用而设计。提出的抓手利用粒子堵塞和软颗粒材料的最新发展产生了强大的握持力,同时非常轻巧,节能,并且只需要低激活力。我们表明,通过在膜的硅硅混合物中添加添加剂,可以将持有力提高多达50%。实验表明,即使没有几何互锁,我们的轻质抓地力也可以以低至2.5n的激活力发育高达15n的持有力。最后,通过将抓地力安装到多旋风的情况下,在实际条件下执行了一个选择和释放任务。开发的空中抓握系统具有许多有用的属性,例如对碰撞的弹性和鲁棒性以及将无人机与环境脱离的固有的被动合规性。
translated by 谷歌翻译
脑出血(ICH)是最致命的中风子类型,死亡率高达52%。由于颅骨切开术引起的潜在皮质破坏,保守管理(注意等待)历史上一直是一种常见的治疗方法。最小的侵入性疏散最近已成为一种可公认的治疗方法,用于体积30-50 mL的深座性血肿的患者,但适当的可视化和工具敏感性仍然受到常规内窥镜方法的限制,尤其是较大的血肿体积(> 50 mL)。在本文中,我们描述了Aspihre的发展(脑部出血机器人疏散的手术平台),这是有史以来的第一个同心管机器人,该机器人使用现成的塑料管来进行MR引导ICH撤离,改善工具敏感性和程序可视化。机器人运动学模型是基于基于校准的方法和试管力学建模开发的,使模型可以考虑可变曲率和扭转偏转。使用可变增益PID算法控制旋转精度为0.317 +/- 0.3度。硬件和理论模型在一系列系统的基准和MRI实验中进行了验证,导致1.39 +\ -0.54 mm的管尖的位置精度。验证靶向准确性后,在MR引导的幻影凝块疏散实验中测试了机器人的疏散功效。该机器人能够在5分钟内撤离最初38.36 mL的凝块,使残留血肿为8.14 mL,远低于15 mL指南,表明良好的后疏散临床结果。
translated by 谷歌翻译
飞行脊椎动物表现出复杂的Wingbeat运动学。他们的专门的前肢允许机翼变形动作在他们的水平飞行过程中与拍打动作加上,以前的可传单仿生平台已经成功地应用了生物启发的翼形变形,但不能被变形耦合的翼展图案推动。由此促进了这一点,我们开发了一个生物启发型扑翼空中车辆(FWAV),题为Robofalcon,配备了一种新颖的机制来推动蝙蝠式的变形翅膀,表现出变形耦合的翼型模式,并整体管理吸引力航班。 Robofalcon的新机制允许在需要在需要操纵时耦合变形和拍打,并在需要操纵时去耦,产生双侧不对称下划作,提供高轧制敏捷性。蝙蝠式的变形翼设计在腕关节的半径周围的倾斜安装角,以模仿飞行脊椎动物的手腕浸湿效果。通过几种轧制机动飞行测试评估了Robofalcon的敏捷性,与飞行生物和当前拍打翼平台相比,我们展示了其性能良好的敏捷性能力。风洞测试表明,不对称下午的辊矩与拍打频率相关,腕部安装角可用于调谐静止飞行状态的攻击角度和提升 - 推力配置。我们认为,这项工作产生了一个良好的仿生平台,为变形耦合扑拍飞行提供了新的驱动策略。
translated by 谷歌翻译
Accurate simulation of soft mechanisms under dynamic actuation is critical for the design of soft robots. We address this gap with our differentiable simulation tool by learning the material parameters of our soft robotic fish. On the example of a soft robotic fish, we demonstrate an experimentally-verified, fast optimization pipeline for learning the material parameters from quasi-static data via differentiable simulation and apply it to the prediction of dynamic performance. Our method identifies physically plausible Young's moduli for various soft silicone elastomers and stiff acetal copolymers used in creation of our three different robotic fish tail designs. We show that our method is compatible with varying internal geometry of the actuators, such as the number of hollow cavities. Our framework allows high fidelity prediction of dynamic behavior for composite bi-morph bending structures in real hardware to millimeter-accuracy and within 3 percent error normalized to actuator length. We provide a differentiable and robust estimate of the thrust force using a neural network thrust predictor; this estimate allows for accurate modeling of our experimental setup measuring bollard pull. This work presents a prototypical hardware and simulation problem solved using our differentiable framework; the framework can be applied to higher dimensional parameter inference, learning control policies, and computational design due to its differentiable character.
translated by 谷歌翻译