The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
translated by 谷歌翻译
在传统的对象检测框架中,从图像识别模型继承的骨干体提取了深层特征,然后颈部模块融合了这些潜在特征,以在不同的尺度上捕获信息。由于对象检测的分辨率比图像识别大得多,因此骨干的计算成本通常主导了总推断成本。这种沉重的背部设计范式主要是由于历史遗产将图像识别模型传输到对象检测时,而不是端到端的优化设计以进行对象检测。在这项工作中,我们表明这种范式确实导致了亚最佳对象检测模型。为此,我们提出了一种新型的重颈范式,长颈鹿,这是一个类似长颈鹿的网络,用于有效的对象检测。长颈鹿使用极轻的骨干和非常深的颈部模块,可同时同时在不同的空间尺度以及不同级别的潜在语义之间进行密集的信息交换。该设计范式允许检测器即使在网络的早期阶段,也可以在相同的优先级处理高级语义信息和低级空间信息,从而使其在检测任务中更有效。对多个流行对象检测基准的数值评估表明,长颈鹿在广泛的资源约束中始终优于先前的SOTA模型。源代码可在https://github.com/jyqi/giraffedet上获得。
translated by 谷歌翻译
在对象检测模型中,检测骨干机消耗超过一半的整体推理成本。最近的研究试图通过在神经结构搜索(NAS)的帮助下优化骨干架构来降低这一成本。然而,对象检测的现有NAS方法需要数百至数千个GPU小时的搜索,使它们在快节奏的研究和开发中不切实际。在这项工作中,我们提出了一种新的零射NAS方法来解决这个问题。所提出的方法,命名为Zendet,在不训练网络参数的情况下自动设计有效的检测骨干网,从而降低了架构设计成本,几乎归零但提供了最先进的(SOTA)性能。在引擎盖下,Zendet最大化了检测骨干的差分熵,导致对象检测的更好的特征提取器,在相同的计算预算下。在仅为全自动设计的一个GPU日之后,Zendet在多个检测基准数据集上创新了SOTA检测骨干,具有很少的人为干预。与Reset-50个骨干相比,Zendet在Map中使用相同数量的拖波/参数时更好地+ 2.0%,并且在同一地图上的NVIDIA V100速度快1.54倍。稍后将发布代码和预先训练的型号。
translated by 谷歌翻译
在近期深度图像压缩神经网络中,熵模型在估计深度图像编码的先前分配时起着重要作用。现有方法将HydupRior与熵估计功能中的本地上下文组合。由于没有全球愿景,这大大限制了他们的表现。在这项工作中,我们提出了一种新的全局参考模型,用于图像压缩,以有效地利用本地和全局上下文信息,导致增强的压缩率。所提出的方法扫描解码的潜伏,然后找到最相关的潜伏,以帮助分布估计当前潜伏。这项工作的副产品是一种平均转换GDN模块的创新,进一步提高了性能。实验结果表明,所提出的模型优于行业中大多数最先进方法的速率变形性能。
translated by 谷歌翻译
Although many studies have successfully applied transfer learning to medical image segmentation, very few of them have investigated the selection strategy when multiple source tasks are available for transfer. In this paper, we propose a prior knowledge guided and transferability based framework to select the best source tasks among a collection of brain image segmentation tasks, to improve the transfer learning performance on the given target task. The framework consists of modality analysis, RoI (region of interest) analysis, and transferability estimation, such that the source task selection can be refined step by step. Specifically, we adapt the state-of-the-art analytical transferability estimation metrics to medical image segmentation tasks and further show that their performance can be significantly boosted by filtering candidate source tasks based on modality and RoI characteristics. Our experiments on brain matter, brain tumor, and white matter hyperintensities segmentation datasets reveal that transferring from different tasks under the same modality is often more successful than transferring from the same task under different modalities. Furthermore, within the same modality, transferring from the source task that has stronger RoI shape similarity with the target task can significantly improve the final transfer performance. And such similarity can be captured using the Structural Similarity index in the label space.
translated by 谷歌翻译
Modern deep neural networks have achieved superhuman performance in tasks from image classification to game play. Surprisingly, these various complex systems with massive amounts of parameters exhibit the same remarkable structural properties in their last-layer features and classifiers across canonical datasets. This phenomenon is known as "Neural Collapse," and it was discovered empirically by Papyan et al. \cite{Papyan20}. Recent papers have theoretically shown the global solutions to the training network problem under a simplified "unconstrained feature model" exhibiting this phenomenon. We take a step further and prove the Neural Collapse occurrence for deep linear network for the popular mean squared error (MSE) and cross entropy (CE) loss. Furthermore, we extend our research to imbalanced data for MSE loss and present the first geometric analysis for Neural Collapse under this setting.
translated by 谷歌翻译
In this paper we derive a PAC-Bayesian-Like error bound for a class of stochastic dynamical systems with inputs, namely, for linear time-invariant stochastic state-space models (stochastic LTI systems for short). This class of systems is widely used in control engineering and econometrics, in particular, they represent a special case of recurrent neural networks. In this paper we 1) formalize the learning problem for stochastic LTI systems with inputs, 2) derive a PAC-Bayesian-Like error bound for such systems, 3) discuss various consequences of this error bound.
translated by 谷歌翻译
Denoising Diffusion Probabilistic Models (DDPMs) are emerging in text-to-speech (TTS) synthesis because of their strong capability of generating high-fidelity samples. However, their iterative refinement process in high-dimensional data space results in slow inference speed, which restricts their application in real-time systems. Previous works have explored speeding up by minimizing the number of inference steps but at the cost of sample quality. In this work, to improve the inference speed for DDPM-based TTS model while achieving high sample quality, we propose ResGrad, a lightweight diffusion model which learns to refine the output spectrogram of an existing TTS model (e.g., FastSpeech 2) by predicting the residual between the model output and the corresponding ground-truth speech. ResGrad has several advantages: 1) Compare with other acceleration methods for DDPM which need to synthesize speech from scratch, ResGrad reduces the complexity of task by changing the generation target from ground-truth mel-spectrogram to the residual, resulting into a more lightweight model and thus a smaller real-time factor. 2) ResGrad is employed in the inference process of the existing TTS model in a plug-and-play way, without re-training this model. We verify ResGrad on the single-speaker dataset LJSpeech and two more challenging datasets with multiple speakers (LibriTTS) and high sampling rate (VCTK). Experimental results show that in comparison with other speed-up methods of DDPMs: 1) ResGrad achieves better sample quality with the same inference speed measured by real-time factor; 2) with similar speech quality, ResGrad synthesizes speech faster than baseline methods by more than 10 times. Audio samples are available at https://resgrad1.github.io/.
translated by 谷歌翻译
Deep learning has been widely used for protein engineering. However, it is limited by the lack of sufficient experimental data to train an accurate model for predicting the functional fitness of high-order mutants. Here, we develop SESNet, a supervised deep-learning model to predict the fitness for protein mutants by leveraging both sequence and structure information, and exploiting attention mechanism. Our model integrates local evolutionary context from homologous sequences, the global evolutionary context encoding rich semantic from the universal protein sequence space and the structure information accounting for the microenvironment around each residue in a protein. We show that SESNet outperforms state-of-the-art models for predicting the sequence-function relationship on 26 deep mutational scanning datasets. More importantly, we propose a data augmentation strategy by leveraging the data from unsupervised models to pre-train our model. After that, our model can achieve strikingly high accuracy in prediction of the fitness of protein mutants, especially for the higher order variants (> 4 mutation sites), when finetuned by using only a small number of experimental mutation data (<50). The strategy proposed is of great practical value as the required experimental effort, i.e., producing a few tens of experimental mutation data on a given protein, is generally affordable by an ordinary biochemical group and can be applied on almost any protein.
translated by 谷歌翻译
Deep neural networks (DNNs) are found to be vulnerable to adversarial attacks, and various methods have been proposed for the defense. Among these methods, adversarial training has been drawing increasing attention because of its simplicity and effectiveness. However, the performance of the adversarial training is greatly limited by the architectures of target DNNs, which often makes the resulting DNNs with poor accuracy and unsatisfactory robustness. To address this problem, we propose DSARA to automatically search for the neural architectures that are accurate and robust after adversarial training. In particular, we design a novel cell-based search space specially for adversarial training, which improves the accuracy and the robustness upper bound of the searched architectures by carefully designing the placement of the cells and the proportional relationship of the filter numbers. Then we propose a two-stage search strategy to search for both accurate and robust neural architectures. At the first stage, the architecture parameters are optimized to minimize the adversarial loss, which makes full use of the effectiveness of the adversarial training in enhancing the robustness. At the second stage, the architecture parameters are optimized to minimize both the natural loss and the adversarial loss utilizing the proposed multi-objective adversarial training method, so that the searched neural architectures are both accurate and robust. We evaluate the proposed algorithm under natural data and various adversarial attacks, which reveals the superiority of the proposed method in terms of both accurate and robust architectures. We also conclude that accurate and robust neural architectures tend to deploy very different structures near the input and the output, which has great practical significance on both hand-crafting and automatically designing of accurate and robust neural architectures.
translated by 谷歌翻译