Denoising Diffusion Probabilistic Models (DDPMs) are emerging in text-to-speech (TTS) synthesis because of their strong capability of generating high-fidelity samples. However, their iterative refinement process in high-dimensional data space results in slow inference speed, which restricts their application in real-time systems. Previous works have explored speeding up by minimizing the number of inference steps but at the cost of sample quality. In this work, to improve the inference speed for DDPM-based TTS model while achieving high sample quality, we propose ResGrad, a lightweight diffusion model which learns to refine the output spectrogram of an existing TTS model (e.g., FastSpeech 2) by predicting the residual between the model output and the corresponding ground-truth speech. ResGrad has several advantages: 1) Compare with other acceleration methods for DDPM which need to synthesize speech from scratch, ResGrad reduces the complexity of task by changing the generation target from ground-truth mel-spectrogram to the residual, resulting into a more lightweight model and thus a smaller real-time factor. 2) ResGrad is employed in the inference process of the existing TTS model in a plug-and-play way, without re-training this model. We verify ResGrad on the single-speaker dataset LJSpeech and two more challenging datasets with multiple speakers (LibriTTS) and high sampling rate (VCTK). Experimental results show that in comparison with other speed-up methods of DDPMs: 1) ResGrad achieves better sample quality with the same inference speed measured by real-time factor; 2) with similar speech quality, ResGrad synthesizes speech faster than baseline methods by more than 10 times. Audio samples are available at https://resgrad1.github.io/.
translated by 谷歌翻译
降级扩散概率模型(DDPM)最近在许多生成任务中都取得了领先的性能。但是,继承的迭代采样过程成本阻碍了他们的应用程序到文本到语音部署。通过有关扩散模型参数化的初步研究,我们发现以前基于梯度的TTS模型需要数百或数千个迭代以保证高样本质量,这对加速采样带来了挑战。在这项工作中,我们提出了Prodiff的建议,以用于高质量文本到语音的渐进快速扩散模型。与以前的估计数据密度梯度的工作不同,Prodiff通过直接预测清洁数据来避免在加速采样时避免明显的质量降解来参数化denoising模型。为了通过减少扩散迭代来应对模型收敛挑战,Prodiff通过知识蒸馏减少目标位点的数据差异。具体而言,Denoising模型使用N-Step DDIM教师的生成的MEL光谱图作为训练目标,并将行为提炼成具有N/2步的新模型。因此,它允许TTS模型做出尖锐的预测,并通过数量级进一步减少采样时间。我们的评估表明,Prodiff仅需要两次迭代即可合成高保真性MEL光谱图,同时使用数百个步骤保持样本质量和多样性与最先进的模型竞争。 Prodiff在单个NVIDIA 2080TI GPU上的采样速度比实时快24倍,这使得扩散模型实际上是第一次适用于文本到语音综合部署。我们广泛的消融研究表明,Prodiff中的每种设计都是有效的,我们进一步表明,Prodiff可以轻松扩展到多扬声器设置。音频样本可在\ url {https://prodiff.github.io/。}上找到
translated by 谷歌翻译
建立唱歌语音合成(SVS)系统以合成高质量和表达歌唱语音,其中声学模型在给定音乐分数时产生声学特征(例如,熔点)。以前的歌唱声学模型采用简单的损失(例如,L1和L2)或生成的对抗网络(GaN)来重建声学特征,同时它们分别遭受过平滑和不稳定的训练问题,这阻碍了合成歌曲的自然性。在这项工作中,我们提出了基于扩散概率模型的SVS的衍射指唱者。 Diffsinger是一个参数化的马尔可夫链,可迭代地将噪声转换为麦克波图条件的音乐分数。通过隐式优化变分界,Diffsinger可以稳定地训练并产生现实的输出。为了进一步提高语音质量和速度推断,我们引入了浅扩散机制,以更好地利用简单损失所学到的先验知识。具体地,根据地面真实熔点的扩散轨迹的交叉点,差异指针在小于扩散步骤的总数的浅步骤中开始产生,并且通过简单的熔融谱图解码器预测的那个。此外,我们提出了边界预测方法来定位交叉点并自适应地确定浅步。对中国歌唱数据集进行的评估表明Diffsinger优于最先进的SVS工作。扩展实验还证明了我们对语音致辞任务(DiffSeech)的方法的概括。音频样本可通过\ url {https://diffsinger.github.io}获得。
translated by 谷歌翻译
诸如FastSpeech之类的非自动回归文本(TTS)模型可以比以前具有可比性的自回归模型合成语音的速度要快得多。 FastSpeech模型的培训依赖于持续时间预测的自回归教师模型(提供更多信息作为输入)和知识蒸馏(以简化输出中的数据分布),这可以缓解一对多的映射问题(即多个多个映射问题语音变化对应于TTS中的同一文本)。但是,FastSpeech有几个缺点:1)教师学生的蒸馏管线很复杂且耗时,2)从教师模型中提取的持续时间不够准确,并且从教师模型中提取的目标MEL光谱图会遭受信息损失的影响。由于数据的简化,两者都限制了语音质量。在本文中,我们提出了FastSpeech 2,它解决了FastSpeech中的问题,并更好地解决了TTS中的一对一映射问题1)直接用地面实现目标直接训练该模型,而不是教师的简化输出,以及2 )作为条件输入,引入更多语音信息(例如,音高,能量和更准确的持续时间)。具体而言,我们从语音波形中提取持续时间,音高和能量,并将其直接作为训练中的条件输入,并在推理中使用预测的值。我们进一步设计了FastSpeech 2s,这是首次尝试从文本中直接生成语音波形的尝试,从而享受完全端到端推断的好处。实验结果表明,1)FastSpeech 2在FastSpeech上实现了3倍的训练,而FastSpeech 2s的推理速度甚至更快; 2)FastSpeech 2和2S的语音质量优于FastSpeech,而FastSpeech 2甚至可以超越自回归型号。音频样本可在https://speechresearch.github.io/fastspeech2/上找到。
translated by 谷歌翻译
Binaural audio plays a significant role in constructing immersive augmented and virtual realities. As it is expensive to record binaural audio from the real world, synthesizing them from mono audio has attracted increasing attention. This synthesis process involves not only the basic physical warping of the mono audio, but also room reverberations and head/ear related filtrations, which, however, are difficult to accurately simulate in traditional digital signal processing. In this paper, we formulate the synthesis process from a different perspective by decomposing the binaural audio into a common part that shared by the left and right channels as well as a specific part that differs in each channel. Accordingly, we propose BinauralGrad, a novel two-stage framework equipped with diffusion models to synthesize them respectively. Specifically, in the first stage, the common information of the binaural audio is generated with a single-channel diffusion model conditioned on the mono audio, based on which the binaural audio is generated by a two-channel diffusion model in the second stage. Combining this novel perspective of two-stage synthesis with advanced generative models (i.e., the diffusion models),the proposed BinauralGrad is able to generate accurate and high-fidelity binaural audio samples. Experiment results show that on a benchmark dataset, BinauralGrad outperforms the existing baselines by a large margin in terms of both object and subject evaluation metrics (Wave L2: 0.128 vs. 0.157, MOS: 3.80 vs. 3.61). The generated audio samples (https://speechresearch.github.io/binauralgrad) and code (https://github.com/microsoft/NeuralSpeech/tree/master/BinauralGrad) are available online.
translated by 谷歌翻译
In this work, we propose DiffWave, a versatile diffusion probabilistic model for conditional and unconditional waveform generation. The model is non-autoregressive, and converts the white noise signal into structured waveform through a Markov chain with a constant number of steps at synthesis. It is efficiently trained by optimizing a variant of variational bound on the data likelihood. DiffWave produces high-fidelity audio in different waveform generation tasks, including neural vocoding conditioned on mel spectrogram, class-conditional generation, and unconditional generation. We demonstrate that DiffWave matches a strong WaveNet vocoder in terms of speech quality (MOS: 4.44 versus 4.43), while synthesizing orders of magnitude faster. In particular, it significantly outperforms autoregressive and GAN-based waveform models in the challenging unconditional generation task in terms of audio quality and sample diversity from various automatic and human evaluations. 1 * Contributed to the work during an internship at Baidu Research, USA. 1 Audio samples are in: https://diffwave-demo.github.io/
translated by 谷歌翻译
大多数神经文本到语音(TTS)模型需要<语音,转录器>来自所需扬声器的成对数据,以获得高质量的语音合成,这限制了大量未经过滤的训练数据的使用。在这项工作中,我们呈现导向TTS,这是一种高质量的TTS模型,用于从未筛选的语音数据生成语音。引导TTS将无条件扩散概率模型与单独培训的音素分类器组合以进行文本到语音。通过对语音的无条件分配建模,我们的模型可以利用未经筛选的培训数据。对于文本到语音合成,我们通过音素分类指导无条件DDPM的生成过程,以产生来自给定转录物的条件分布的MEL-谱图。我们表明,导向TTS与现有的方法实现了可比性的性能,而没有LJSpeech的任何成绩单。我们的结果进一步表明,在MultiSpeaker大规模数据上培训的单个扬声器相关的音素分类器可以指导针对各种扬声器执行TTS的无条件DDPM。
translated by 谷歌翻译
从语音音频中删除背景噪音一直是大量研究和努力的主题,尤其是由于虚拟沟通和业余声音录制的兴起,近年来。然而,背景噪声并不是唯一可以防止可理解性的不愉快干扰:混响,剪裁,编解码器工件,有问题的均衡,有限的带宽或不一致的响度同样令人不安且无处不在。在这项工作中,我们建议将言语增强的任务视为一项整体努力,并提出了一种普遍的语音增强系统,同时解决了55种不同的扭曲。我们的方法由一种使用基于得分的扩散的生成模型以及一个多分辨率调节网络,该网络通过混合密度网络进行增强。我们表明,这种方法在专家听众执行的主观测试中大大优于艺术状态。我们还表明,尽管没有考虑任何特定的快速采样策略,但它仅通过4-8个扩散步骤就可以实现竞争性的目标得分。我们希望我们的方法论和技术贡献都鼓励研究人员和实践者采用普遍的语音增强方法,可能将其作为一项生成任务。
translated by 谷歌翻译
Deep learning based text-to-speech (TTS) systems have been evolving rapidly with advances in model architectures, training methodologies, and generalization across speakers and languages. However, these advances have not been thoroughly investigated for Indian language speech synthesis. Such investigation is computationally expensive given the number and diversity of Indian languages, relatively lower resource availability, and the diverse set of advances in neural TTS that remain untested. In this paper, we evaluate the choice of acoustic models, vocoders, supplementary loss functions, training schedules, and speaker and language diversity for Dravidian and Indo-Aryan languages. Based on this, we identify monolingual models with FastPitch and HiFi-GAN V1, trained jointly on male and female speakers to perform the best. With this setup, we train and evaluate TTS models for 13 languages and find our models to significantly improve upon existing models in all languages as measured by mean opinion scores. We open-source all models on the Bhashini platform.
translated by 谷歌翻译
本文介绍了语音(TTS)系统的Microsoft端到端神经文本:暴风雪挑战2021。这一挑战的目标是从文本中综合自然和高质量的演讲,并在两个观点中接近这一目标:首先是直接模型,并在48 kHz采样率下产生波形,这比以前具有16 kHz或24 kHz采样率的先前系统带来更高的感知质量;第二个是通过系统设计来模拟语音中的变化信息,从而提高了韵律和自然。具体而言,对于48 kHz建模,我们预测声学模型中的16 kHz熔点 - 谱图,并提出称为HIFINET的声码器直接从预测的16kHz MEL谱图中产生48kHz波形,这可以更好地促进培训效率,建模稳定性和语音。质量。我们从显式(扬声器ID,语言ID,音高和持续时间)和隐式(话语级和音素级韵律)视角系统地模拟变化信息:1)对于扬声器和语言ID,我们在培训和推理中使用查找嵌入; 2)对于音高和持续时间,我们在训练中提取来自成对的文本语音数据的值,并使用两个预测器来预测推理中的值; 3)对于话语级和音素级韵律,我们使用两个参考编码器来提取训练中的值,并使用两个单独的预测器来预测推理中的值。此外,我们介绍了一个改进的符合子块,以更好地模拟声学模型中的本地和全局依赖性。对于任务SH1,DelightFultts在MOS测试中获得4.17均匀分数,4.35在SMOS测试中,表明我们所提出的系统的有效性
translated by 谷歌翻译
尽管在基于生成的对抗网络(GAN)的声音编码器中,该模型在MEL频谱图中生成原始波形,但在各种录音环境中为众多扬声器合成高保真音频仍然具有挑战性。在这项工作中,我们介绍了Bigvgan,这是一款通用的Vocoder,在零照片环境中在各种看不见的条件下都很好地概括了。我们将周期性的非线性和抗氧化表现引入到发电机中,这带来了波形合成所需的感应偏置,并显着提高了音频质量。根据我们改进的生成器和最先进的歧视器,我们以最大的规模训练我们的Gan Vocoder,最高到1.12亿个参数,这在文献中是前所未有的。特别是,我们识别并解决了该规模特定的训练不稳定性,同时保持高保真输出而不过度验证。我们的Bigvgan在各种分布场景中实现了最先进的零拍性能,包括新的扬声器,新颖语言,唱歌声音,音乐和乐器音频,在看不见的(甚至是嘈杂)的录制环境中。我们将在以下网址发布我们的代码和模型:https://github.com/nvidia/bigvgan
translated by 谷歌翻译
最近,基于GAN的神经声码器(如平行Wavegan,Melgan,Hifigan和Univnet)由于其轻巧和平行的结构而变得流行,从而导致具有高保真性的实时合成波形,即使在CPU上也是如此。 Hifigan和Univnet是两个Sota Vocoders。尽管它们质量很高,但仍有改进的余地。在本文中,由计算机视觉的视觉望远镜结构的激励,我们采用了一个类似的想法,并提出了一个有效且轻巧的神经声码器,称为Wolonet。在该网络中,我们开发了一个新颖的轻质块,该块使用位于曲线的动态凝胶核的位置变化,与通道无关和深度动态卷积内核。为了证明我们方法的有效性和概括性,我们进行了一项消融研究,以验证我们的新型设计,并与典型的基于GAN的歌手进行主观和客观的比较。结果表明,我们的Wolonet达到了最佳的一代质量,同时需要的参数少于两个神经SOTA声码器Hifigan和Univnet。
translated by 谷歌翻译
配音是重新录制演员对话的后期生产过程,广泛用于电影制作和视频制作。它通常由专业的语音演员手动进行,他用适当的韵律读取行,以及与预先录制的视频同步。在这项工作中,我们提出了神经翻译,第一个神经网络模型来解决新型自动视频配音(AVD)任务:合成与来自文本给定视频同步的人类语音。神经杜布斯是一种多模态文本到语音(TTS)模型,它利用视频中的唇部运动来控制所生成的语音的韵律。此外,为多扬声器设置开发了一种基于图像的扬声器嵌入(ISE)模块,这使得神经Dubber能够根据扬声器的脸部产生具有合理的Timbre的语音。化学讲座的实验单扬声器数据集和LRS2多扬声器数据集显示,神经杜布斯可以在语音质量方面产生与最先进的TTS模型的语音声音。最重要的是,定性和定量评估都表明,神经杜布斯可以通过视频控制综合演讲的韵律,并产生与视频同步的高保真语音。
translated by 谷歌翻译
用于将音频信号的光谱表示转换为波形的神经声学器是语音合成管道中的常用组件。它侧重于合成来自低维表示的波形,例如MEL-谱图。近年来,已经引入了不同的方法来开发这种声音。但是,评估这些新的声音仪并将其表达与以前的声学相比,它变得更具挑战性。为了解决这个问题,我们呈现VOCBENCH,这是一个框架,该框架是基于最先进的神经声码器的性能。 VOCBENCH使用系统研究来评估共享环境中的不同神经探测器,使它们能够进行公平比较。在我们的实验中,我们对所有神经副探测器的数据集,培训管道和评估指标使用相同的设置。我们执行主观和客观评估,以比较每个声码器沿不同的轴的性能。我们的结果表明,该框架能够为每种声学器提供竞争的疗效和合成样品的质量。 Vocebench框架可在https://github.com/facebookResearch/Vocoder-Benchmark中获得。
translated by 谷歌翻译
We propose Parallel WaveGAN, a distillation-free, fast, and smallfootprint waveform generation method using a generative adversarial network. In the proposed method, a non-autoregressive WaveNet is trained by jointly optimizing multi-resolution spectrogram and adversarial loss functions, which can effectively capture the time-frequency distribution of the realistic speech waveform. As our method does not require density distillation used in the conventional teacher-student framework, the entire model can be easily trained. Furthermore, our model is able to generate highfidelity speech even with its compact architecture. In particular, the proposed Parallel WaveGAN has only 1.44 M parameters and can generate 24 kHz speech waveform 28.68 times faster than realtime on a single GPU environment. Perceptual listening test results verify that our proposed method achieves 4.16 mean opinion score within a Transformer-based text-to-speech framework, which is comparative to the best distillation-based Parallel WaveNet system.
translated by 谷歌翻译
神经文本到语音研究的最新进展是利用低级中间语音表示(例如MEL-光谱图)的两阶段管道主导的。但是,这种预定的特征从根本上受到限制,因为它们不允许通过学习隐藏表示形式来利用数据驱动方法的全部潜力。因此,已经提出了几种端到端方法。但是,这样的模型更难训练,并且需要大量具有转录的高质量录音。在这里,我们提出了WavThruvec-一种两阶段的架构,通过使用高维WAV2VEC 2.0嵌入作为中间语音表示,可以解决瓶颈。由于这些隐藏的激活提供了高级语言特征,因此它们对噪音更强大。这使我们能够利用质量较低的注释语音数据集来训练第一阶段模块。同时,由于WAV2VEC 2.0的嵌入已经进行了时间对齐,因此可以在大规模未转录的音频语料库上对第二阶段组件进行培训。这导致了对量表词的概括能力的提高,以及对看不见的说话者的更好概括。我们表明,所提出的模型不仅与最新神经模型的质量相匹配,而且还介绍了有用的属性,可以实现语音转换或零弹性合成的任务。
translated by 谷歌翻译
语音转换是一项常见的语音综合任务,可以根据特定的现实情况来以不同的方式解决。最具挑战性的人通常被称为单一镜头多次的语音转换是在最一般的情况下,从一个参考语音中复制目标语音,而源和目标扬声器都不属于培训数据集。我们提出了一种基于扩散概率建模的可扩展高质量解决方案,与最新的单发语音转换方法相比,它表现出了优质的质量。此外,我们专注于实时应用程序,我们研究了可以更快地使扩散模型的一般原则,同时将合成质量保持在高水平。结果,我们开发了一种新型的随机微分方程求解器,适用于各种扩散模型类型和生成任务,如经验研究所示,并通过理论分析证明了它。
translated by 谷歌翻译
Several recent work on speech synthesis have employed generative adversarial networks (GANs) to produce raw waveforms. Although such methods improve the sampling efficiency and memory usage, their sample quality has not yet reached that of autoregressive and flow-based generative models. In this work, we propose HiFi-GAN, which achieves both efficient and high-fidelity speech synthesis. As speech audio consists of sinusoidal signals with various periods, we demonstrate that modeling periodic patterns of an audio is crucial for enhancing sample quality. A subjective human evaluation (mean opinion score, MOS) of a single speaker dataset indicates that our proposed method demonstrates similarity to human quality while generating 22.05 kHz high-fidelity audio 167.9 times faster than real-time on a single V100 GPU. We further show the generality of HiFi-GAN to the melspectrogram inversion of unseen speakers and end-to-end speech synthesis. Finally, a small footprint version of HiFi-GAN generates samples 13.4 times faster than real-time on CPU with comparable quality to an autoregressive counterpart. IntroductionVoice is one of the most frequent and naturally used communication interfaces for humans. With recent developments in technology, voice is being used as a main interface in artificial intelligence (AI) voice assistant services such as Amazon Alexa, and it is also widely used in automobiles, smart homes and so forth. Accordingly, with the increase in demand for people to converse with machines, technology that synthesizes natural speech like human speech is being actively studied.Recently, with the development of neural networks, speech synthesis technology has made a rapid progress. Most neural speech synthesis models use a two-stage pipeline: 1) predicting a low resolution intermediate representation such as mel-spectrograms (
translated by 谷歌翻译
大多数GaN(生成的对抗网络)基于高保真波形的方法,严重依赖于鉴别者来提高其性能。然而,该GaN方法的过度使用引入了生成过程中的许多不确定性,并且通常导致音调和强度不匹配,当使用诸如唱歌语音合成(SVS)敏感时,这是致命的。为了解决这个问题,我们提出了一种高保真神经声码器的Refinegan,具有更快的实时发电能力,并专注于鲁棒性,俯仰和强度精度和全带音频生成。我们采用了一种具有基于多尺度谱图的损耗功能的播放引导的细化架构,以帮助稳定训练过程,并在使用基于GaN的训练方法的同时保持神经探测器的鲁棒性。与地面真实音频相比,使用此方法生成的音频显示在主观测试中更好的性能。该结果表明,通过消除由扬声器和记录过程产生的缺陷,在波形重建期间甚至改善了保真度。此外,进一步的研究表明,在特定类型的数据上培训的模型可以在完全看不见的语言和看不见的扬声器上相同地执行。生成的样本对在https://timedomain-tech.github.io/refinegor上提供。
translated by 谷歌翻译
理想的音乐合成器应具有互动性和表现力,并实时产生高保真音频,以进行任意组合仪器和音符。最近的神经合成器在特定于域的模型之间表现出了折衷,这些模型仅对特定仪器或可以训练所有音乐训练但最小的控制和缓慢发电的原始波形模型提供了详细的控制。在这项工作中,我们专注于神经合成器的中间立场,这些基础可以从MIDI序列中产生音频,并实时使用仪器的任意组合。这使得具有单个模型的各种转录数据集的培训,这又提供了对各种仪器的组合和仪器的控制级别的控制。我们使用一个简单的两阶段过程:MIDI到具有编码器变压器的频谱图,然后使用生成对抗网络(GAN)频谱图逆变器将频谱图到音频。我们将训练解码器作为自回归模型进行了比较,并将其视为一种脱氧扩散概率模型(DDPM),并发现DDPM方法在定性上是优越的,并且通过音频重建和fr \'echet距离指标来衡量。鉴于这种方法的互动性和普遍性,我们发现这是迈向互动和表达性神经综合的有前途的第一步,以实现工具和音符的任意组合。
translated by 谷歌翻译