大多数现有的基于深度学习的方法用于血管分割的方法忽略了视网膜血管的两个重要方面,一个是船只的定向信息,另一个是整个基底区域的上下文信息。在本文中,我们提出了一个强大的方向和上下文纠缠的网络(称为OCE-NET),该网络具有提取血管的复杂方向和上下文信息的能力。为了实现复杂的方向,提出了动态复杂方向意识卷积(DCOA Conv),以提取具有多种取向的复杂血管,以改善血管连续性。为了同时捕获全球上下文信息并强调重要的本地信息,开发了一个全球和局部融合模块(GLFM),以同时对船舶的长距离依赖性进行建模,并将足够的关注放在局部薄船上。提出了一种新颖的方向和上下文纠缠的非本地(OCE-NL)模块,以将方向和上下文信息纠缠在一起。此外,提出了不平衡的注意模块(UARM)来处理背景,厚和薄容器的不平衡像素数量。在几个常用的数据集(驱动器,凝视和ChasceB1)和一些更具挑战性的数据集(AV Wide,UOA-DR,RFMID和UK BioBANK)上进行了广泛的实验。消融研究表明,所提出的方法在保持薄血管的连续性方面取得了有希望的性能,比较实验表明,我们的OCE-NET可以在视网膜血管分割上实现最新性能。
translated by 谷歌翻译
计算机辅助X射线肺炎病变识别对于准确诊断肺炎很重要。随着深度学习的出现,肺炎的识别准确性得到了极大的改善,但是由于胸部X射线的模糊外观,仍然存在一些挑战。在本文中,我们提出了一个深度学习框架,称为基于注意力的对比度学习,用于治疗X射线肺炎病变识别(表示为深肺炎)。我们采用自我监督的对比学习策略来预先培训模型,而无需使用额外的肺炎数据来完全挖掘有限的可用数据集。为了利用医生精心贴出的病变区域的位置信息,我们提出了面具引导的硬注意策略和特征学习,并具有对比度调节策略,这些策略分别应用于注意力图和提取功能,以指导模型以指导模型将更多注意力集中在病变区域,其中包含更多歧视性特征以改善识别性能。此外,我们采用班级平衡的损失,而不是传统的跨凝性作为分类的损失函数,以解决数据集中不同类别肺炎之间严重类失衡的问题。实验结果表明,我们提出的框架可以用作可靠的计算机辅助肺炎诊断系统,以帮助医生更好地诊断肺炎病例。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
Adversarial robustness assessment for video recognition models has raised concerns owing to their wide applications on safety-critical tasks. Compared with images, videos have much high dimension, which brings huge computational costs when generating adversarial videos. This is especially serious for the query-based black-box attacks where gradient estimation for the threat models is usually utilized, and high dimensions will lead to a large number of queries. To mitigate this issue, we propose to simultaneously eliminate the temporal and spatial redundancy within the video to achieve an effective and efficient gradient estimation on the reduced searching space, and thus query number could decrease. To implement this idea, we design the novel Adversarial spatial-temporal Focus (AstFocus) attack on videos, which performs attacks on the simultaneously focused key frames and key regions from the inter-frames and intra-frames in the video. AstFocus attack is based on the cooperative Multi-Agent Reinforcement Learning (MARL) framework. One agent is responsible for selecting key frames, and another agent is responsible for selecting key regions. These two agents are jointly trained by the common rewards received from the black-box threat models to perform a cooperative prediction. By continuously querying, the reduced searching space composed of key frames and key regions is becoming precise, and the whole query number becomes less than that on the original video. Extensive experiments on four mainstream video recognition models and three widely used action recognition datasets demonstrate that the proposed AstFocus attack outperforms the SOTA methods, which is prevenient in fooling rate, query number, time, and perturbation magnitude at the same.
translated by 谷歌翻译
Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets. To address this challenge, we introduce the Merger Agreement Understanding Dataset (MAUD), an expert-annotated reading comprehension dataset based on the American Bar Association's 2021 Public Target Deal Points Study, with over 39,000 examples and over 47,000 total annotations. Our fine-tuned Transformer baselines show promising results, with models performing well above random on most questions. However, on a large subset of questions, there is still room for significant improvement. As the only expert-annotated merger agreement dataset, MAUD is valuable as a benchmark for both the legal profession and the NLP community.
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译
Surgical robot automation has attracted increasing research interest over the past decade, expecting its huge potential to benefit surgeons, nurses and patients. Recently, the learning paradigm of embodied AI has demonstrated promising ability to learn good control policies for various complex tasks, where embodied AI simulators play an essential role to facilitate relevant researchers. However, existing open-sourced simulators for surgical robot are still not sufficiently supporting human interactions through physical input devices, which further limits effective investigations on how human demonstrations would affect policy learning. In this paper, we study human-in-the-loop embodied intelligence with a new interactive simulation platform for surgical robot learning. Specifically, we establish our platform based on our previously released SurRoL simulator with several new features co-developed to allow high-quality human interaction via an input device. With these, we further propose to collect human demonstrations and imitate the action patterns to achieve more effective policy learning. We showcase the improvement of our simulation environment with the designed new features and tasks, and validate state-of-the-art reinforcement learning algorithms using the interactive environment. Promising results are obtained, with which we hope to pave the way for future research on surgical embodied intelligence. Our platform is released and will be continuously updated in the website: https://med-air.github.io/SurRoL/
translated by 谷歌翻译