计算机辅助X射线肺炎病变识别对于准确诊断肺炎很重要。随着深度学习的出现,肺炎的识别准确性得到了极大的改善,但是由于胸部X射线的模糊外观,仍然存在一些挑战。在本文中,我们提出了一个深度学习框架,称为基于注意力的对比度学习,用于治疗X射线肺炎病变识别(表示为深肺炎)。我们采用自我监督的对比学习策略来预先培训模型,而无需使用额外的肺炎数据来完全挖掘有限的可用数据集。为了利用医生精心贴出的病变区域的位置信息,我们提出了面具引导的硬注意策略和特征学习,并具有对比度调节策略,这些策略分别应用于注意力图和提取功能,以指导模型以指导模型将更多注意力集中在病变区域,其中包含更多歧视性特征以改善识别性能。此外,我们采用班级平衡的损失,而不是传统的跨凝性作为分类的损失函数,以解决数据集中不同类别肺炎之间严重类失衡的问题。实验结果表明,我们提出的框架可以用作可靠的计算机辅助肺炎诊断系统,以帮助医生更好地诊断肺炎病例。
translated by 谷歌翻译
B扫描超声模式中图像的精确和快速分类对于诊断眼部疾病至关重要。然而,在超声波中区分各种疾病仍然挑战经验丰富的眼科医生。因此,在这项工作中开发了一个新颖的对比度截面网络(CDNET),旨在应对超声图像中眼异常的细粒度图像分类(FGIC)挑战,包括眼内肿瘤(IOT),视网膜脱离(RD),后堆肥葡萄球菌(PSS)和玻璃体出血(VH)。 CDNET的三个基本组成部分分别是弱监督的病变定位模块(WSLL),对比度多Zoom(CMZ)策略和超级性对比度分解损失(HCD-LOSS)。这些组件促进了在输入和输出方面的细粒度识别的特征分离。所提出的CDNET在我们的ZJU Ocular Ultrasound数据集(Zjuuld)上进行了验证,该数据集由5213个样品组成。此外,在两个公共且广泛使用的胸部X射线FGIC基准上验证了CDNET的概括能力。定量和定性结果证明了我们提出的CDNET的功效,该CDNET在FGIC任务中实现了最新的性能。代码可在以下网址获得:https://github.com/zeroonegame/cdnet-for-ous-fgic。
translated by 谷歌翻译
在深度学习方法进行自动医学图像分析的最新成功之前,从业者使用手工制作的放射线特征来定量描述当地的医学图像斑块。但是,提取区分性放射素特征取决于准确的病理定位,这在现实世界中很难获得。尽管疾病分类和胸部X射线的定位方面取得了进步,但许多方法未能纳入临床知名的领域知识。由于这些原因,我们提出了一个放射素引导的变压器(RGT),该变压器(RGT)与\ textit {global}图像信息与\ textit {local}知识引导的放射线信息信息提供准确的心肺病理学定位和分类\ textit {无需任何界限盒{ }。 RGT由图像变压器分支,放射线变压器分支以及聚集图像和放射线信息的融合层组成。 RGT使用对图像分支的自我注意事项,提取了一个边界框来计算放射线特征,该特征由放射线分支进一步处理。然后通过交叉注意层融合学习的图像和放射线特征。因此,RGT利用了一种新型的端到端反馈回路,该回路只能使用图像水平疾病标签引导精确的病理定位。 NIH CHESTXRAR数据集的实验表明,RGT的表现优于弱监督疾病定位的先前作品(在各个相交联合阈值的平均余量为3.6 \%)和分类(在接收器操作方下平均1.1 \%\%\%\%曲线)。接受代码和训练有素的模型将在接受后发布。
translated by 谷歌翻译
胸部射线照相是一种相对便宜,广泛的医疗程序,可传达用于进行诊断决策的关键信息。胸部X射线几乎总是用于诊断呼吸系统疾病,如肺炎或最近的Covid-19。在本文中,我们提出了一个自我监督的深神经网络,其在未标记的胸部X射线数据集上掠夺。学习的陈述转移到下游任务 - 呼吸系统疾病的分类。在四个公共数据集获得的结果表明,我们的方法在不需要大量标记的培训数据的情况下产生竞争力。
translated by 谷歌翻译
尽管深入学习算法已被深入开发用于计算机辅助结核病诊断(CTD),但它们主要依赖于精心注释的数据集,从而导致了大量时间和资源消耗。弱监督的学习(WSL)利用粗粒标签来完成精细的任务,具有解决此问题的潜力。在本文中,我们首先提出了一个新的大规模结核病(TB)胸部X射线数据集,即结核病胸部X射线属性数据集(TBX-ATT),然后建立一个属性辅助的弱点监督的框架来分类并通过利用属性信息来克服WSL方案中的监督不足来定位结核病。具体而言,首先,TBX-ATT数据集包含2000个X射线图像,其中具有七种用于TB关系推理的属性,这些属性由经验丰富的放射科医生注释。它还包括带有11200 X射线图像的公共TBX11K数据集,以促进弱监督检测。其次,我们利用一个多尺度特征交互模型,用于TB区域分类和属性关系推理检测。在TBX-ATT数据集上评估了所提出的模型,并将作为未来研究的稳固基准。代码和数据将在https://github.com/gangmingzhao/tb-attribute-weak-localization上获得。
translated by 谷歌翻译
不平衡的培训数据是医学图像分类的重大挑战。在这项研究中,我们提出了一个新型的渐进式中心三重态(PCCT)框架,以减轻类不平衡问题,尤其是用于诊断稀有疾病的问题,主要是通过仔细设计三重态采样策略和三重态损失形成。具体而言,PCCT框架包括两个连续的阶段。在第一阶段,PCCT通过类平衡的三重损失训练诊断系统,从而使不同类别的分布分布粗糙。在第二阶段,PCCT框架进一步改善了诊断系统,涉及三胞胎损失,从而导致每个类别的分布更紧凑。对于级别平衡的三重态损失,在每个训练迭代中为每个班级平均采样三重态,从而减轻了不平衡的数据问题。对于涉及三胞胎的集体中心损失,每个三重态中的正和负样本被其相应的类中心取代,该中心强制执行靠近类中心的同一类的数据表示。此外,涉及的三胞胎损失涉及的中心损失将扩展到成对的排名损失和四倍体损失,这证明了所提出的框架的概括。广泛的实验支持PCCT框架有效地用于医疗图像分类,并使用不平衡的训练图像。在两个皮肤图像数据集和一个胸部X射线数据集上,建议的方法分别获得了所有类别的平均F1得分86.2、65.2和90.66,以及81.4、63.87和81.92的稀有班级,即可实现最罕见的班级。性能并超越广泛使用的类不平衡问题的方法。
translated by 谷歌翻译
已经证明对比学习是有效的,可以减轻医学图像分析中昂贵注释的高需求,这可以捕获图像中的一般图案,并且自然用作各种任务的初始特征提取器。最近的作品主要基于案例明智的歧视,并学习全球歧视特征;然而,他们不能帮助临床医生处理主要由局部相似性分类的微小解剖结构,病变和组织。在这项工作中,我们提出了一般无人监督的框架,以了解来自医学图像的局部歧视特征,以进行模型的初始化。在此事实之后,相同体区域的图像应该共享类似的解剖结构,并且相同结构的像素应该具有类似的语义模式,我们设计神经网络以构建具有相似上下文的像素的局部判别嵌入空间是聚类和异种像素的分散。该网络主要包含两个分支:嵌入分支以生成像素 - WISE Embeddings,以及聚类分支以将相同结构的像素聚集在一起并生成分段。提出了一种区域辨别损失以在互利模式中优化这两个分支,使得通过聚类分支集群聚集在一起的像素共享类似的嵌入式矢量,并且训练模型可以测量像素方面的相似性。当转移到下游任务时,基于我们框架的学习特征提取器显示出更好的泛化能力,这优于来自广泛的最先进的方法,并在彩色眼底和胸部X光中的所有12个下游任务中获胜11。此外,我们利用像素 - 方面的嵌入来测量区域相似度,并提出一种形状引导的跨模块分割框架和中心敏感的单次地标定位算法。
translated by 谷歌翻译
Well-annotated medical datasets enable deep neural networks (DNNs) to gain strong power in extracting lesion-related features. Building such large and well-designed medical datasets is costly due to the need for high-level expertise. Model pre-training based on ImageNet is a common practice to gain better generalization when the data amount is limited. However, it suffers from the domain gap between natural and medical images. In this work, we pre-train DNNs on ultrasound (US) domains instead of ImageNet to reduce the domain gap in medical US applications. To learn US image representations based on unlabeled US videos, we propose a novel meta-learning-based contrastive learning method, namely Meta Ultrasound Contrastive Learning (Meta-USCL). To tackle the key challenge of obtaining semantically consistent sample pairs for contrastive learning, we present a positive pair generation module along with an automatic sample weighting module based on meta-learning. Experimental results on multiple computer-aided diagnosis (CAD) problems, including pneumonia detection, breast cancer classification, and breast tumor segmentation, show that the proposed self-supervised method reaches state-of-the-art (SOTA). The codes are available at https://github.com/Schuture/Meta-USCL.
translated by 谷歌翻译
人们普遍认为,污渍差异引起的颜色变化是组织病理学图像分析的关键问题。现有方法采用颜色匹配,染色分离,污渍转移或它们的组合以减轻污渍变化问题。在本文中,我们提出了一种用于组织病理学图像分析的新型染色自适应自我监督学习(SASSL)方法。我们的SASSL将一个域 - 交流训练模块集成到SSL框架中,以学习独特的特征,这些功能对各种转换和污渍变化都具有鲁棒性。所提出的SASSL被视为域不变特征提取的一般方法,可以通过对特定下游任务的特征进行细微调整特征来灵活地与任意下游组织病理学图像分析模块(例如核/组织分割)结合。我们进行了有关公开可用的病理图像分析数据集的实验,包括熊猫,乳腺癌和camelyon16数据集,以实现最先进的性能。实验结果表明,所提出的方法可以鲁棒地提高模型的特征提取能力,并在下游任务中实现稳定的性能改善。
translated by 谷歌翻译
上下文信息对于各种计算机视觉任务至关重要,以前的作品通常设计插件模块和结构损失,以有效地提取和汇总全局上下文。这些方法利用优质标签来优化模型,但忽略了精细训练的特征也是宝贵的训练资源,可以将优选的分布引入硬像素(即错误分类的像素)。受到无监督范式的对比学习的启发,我们以监督的方式应用了对比度损失,并重新设计了损失功能,以抛弃无监督学习的刻板印象(例如,积极和负面的不平衡,对锚定计算的混淆)。为此,我们提出了阳性阴性相等的对比损失(PNE损失),这增加了阳性嵌入对锚的潜在影响,并同时对待阳性和阴性样本对。 PNE损失可以直接插入现有的语义细分框架中,并以可忽视的额外计算成本导致出色的性能。我们利用许多经典的分割方法(例如,DeepLabv3,Ocrnet,Upernet)和骨干(例如Resnet,Hrnet,Swin Transformer)进行全面的实验,并在两个基准数据集(例如,例如,例如,,例如城市景观和可可固定)。我们的代码将公开
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)占据了计算机视野的领域,这要归功于它们提取功能及其在分类问题中出色的表现,例如在自动分析X射线中。不幸的是,这些神经网络被认为是黑盒算法,即不可能了解该算法如何实现最终结果。要将这些算法应用于不同领域并测试方法论的工作原理,我们需要使用可解释的AI技术。医学领域的大多数工作都集中在二进制或多类分类问题上。但是,在许多现实生活中,例如胸部X射线射线,可以同时出现不同疾病的放射学迹象。这引起了所谓的“多标签分类问题”。这些任务的缺点是类不平衡,即不同的标签没有相同数量的样本。本文的主要贡献是一种深度学习方法,用于不平衡的多标签胸部X射线数据集。它为当前未充分利用的Padchest数据集建立了基线,并基于热图建立了可解释的AI技术。该技术还包括概率和模型间匹配。我们系统的结果很有希望,尤其是考虑到使用的标签数量。此外,热图与预期区域相匹配,即它们标志着专家将用来做出决定的区域。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
背景:宫颈癌严重影响了女性生殖系统的健康。光学相干断层扫描(OCT)作为宫颈疾病检测的非侵入性,高分辨率成像技术。然而,OCT图像注释是知识密集型和耗时的,这阻碍了基于深度学习的分类模型的培训过程。目的:本研究旨在基于自我监督学习,开发一种计算机辅助诊断(CADX)方法来对体内宫颈OCT图像进行分类。方法:除了由卷积神经网络(CNN)提取的高电平语义特征外,建议的CADX方法利用了通过对比纹理学习来利用未标记的宫颈OCT图像的纹理特征。我们在中国733名患者的多中心临床研究中对OCT图像数据集进行了十倍的交叉验证。结果:在用于检测高风险疾病的二元分类任务中,包括高级鳞状上皮病变和宫颈癌,我们的方法实现了0.9798加号或减去0.0157的面积曲线值,灵敏度为91.17加或对于OCT图像贴片,减去4.99%,特异性为93.96加仑或减去4.72%;此外,它在测试集上的四位医学专家中表现出两种。此外,我们的方法在使用交叉形阈值投票策略的118名中国患者中达到了91.53%的敏感性和97.37%的特异性。结论:所提出的基于对比 - 学习的CADX方法表现优于端到端的CNN模型,并基于纹理特征提供更好的可解释性,其在“见和治疗”的临床协议中具有很大的潜力。
translated by 谷歌翻译
在肉牛的库存中,基于计算机视觉的方法已被广泛用于监测牛状况(例如,物理,生理学和健康)。为此,准确有效的牛行动是一种先决条件。通常,大多数现有模型仅限于个人行为,这些行为使用基于视频的方法提取时空特征来识别每只牛的个体作用。但是,牛之间存在社会性,它们的相互作用通常反映了重要条件,例如Estrus以及基于视频的方法忽略了模型的实时功能。基于这一点,我们解决了本文中单个框架中牛之间的实时识别的具有挑战性的任务。我们方法的管道包括两个主要模块:牛本地化网络和交互识别网络。在每时每刻,牛本地化网络都会从每个检测到的牛输出高质量的互动建议,并将其输入具有三流体系结构的交互识别网络。这样的三流网络使我们能够融合与识别交互有关的不同功能。具体而言,这三种功能是一个视觉特征,它提取了互动建议的外观表示,这是反映牛之间空间关系的几何特征,以及一种语义特征,它捕获了我们对个人动作和相互作用之间关系的先验知识牛。此外,为了解决数量不足的标记数据问题,我们基于自我监督学习的模型预先培训。定性和定量评估证明了我们框架作为实时识别牛相互作用的有效方法的性能。
translated by 谷歌翻译
近年来,弱监督学习已成为一种流行的技术。在本文中,我们提出了一种新的医学图像分类算法,称为弱监督的生成对抗网络(Wsgan),其仅使用少量的真实图像而没有标签来生成假图像或掩模图像以放大训练的样本大小放。首先,我们将与MixMatch相结合以生成假图像和未标记图像的伪标签进行分类。其次,将对比学习和自我关注机制引入提出的问题,以提高分类准确性。第三,模式崩溃的问题通过循环一致性损失很好地解决。最后,我们设计全局和本地分类器,可以通过分类所需的关键信息来补充彼此。在四个医学图像数据集上的实验结果表明,Wsgan可以通过使用少数标记和未标记的数据来获得相对高的学习性能。例如,Wsgan的分类准确性高于具有100个标记的Mixmatch的11%,在10个标记的图像和OCT数据集上有1000个未标记的图像。此外,我们还开展了消融实验来验证我们算法的有效性。
translated by 谷歌翻译
自首次报道以来,2019年冠状病毒病(Covid-19)已在全球范围内传播,并成为人类面临的健康危机。放射学成像技术,例如计算机断层扫描(CT)和胸部X射线成像(CXR)是诊断CoVID-19的有效工具。但是,在CT和CXR图像中,感染区域仅占据图像的一小部分。一些整合大规模接受场的常见深度学习方法可能会导致图像细节的丢失,从而导致省略了COVID-19图像中感兴趣区域(ROI),因此不适合进一步处理。为此,我们提出了一个深空金字塔池(D-SPP)模块,以在不同的分辨率上整合上下文信息,旨在有效地在COVID-19的不同尺度下提取信息。此外,我们提出了COVID-19感染检测(CID)模块,以引起人们对病变区域的注意,并从无关信息中消除干扰。在四个CT和CXR数据集上进行的广泛实验表明,我们的方法在检测CT和CXR图像中检测COVID-19病变的准确性更高。它可以用作计算机辅助诊断工具,以帮助医生有效地诊断和筛选COVID-19。
translated by 谷歌翻译
在过去的十年中,使用深度学习方法从胸部X光片检测到胸部X光片是一个活跃的研究领域。大多数以前的方法试图通过识别负责对模型预测的重要贡献的空间区域来关注图像的患病器官。相比之下,专家放射科医生在确定这些区域是否异常之前首先找到突出的解剖结构。因此,将解剖学知识纳入深度学习模型可能会带来自动疾病分类的大幅改善。在此激励的情况下,我们提出了解剖学XNET,这是一种基于解剖学注意的胸腔疾病分类网络,该网络优先考虑由预识别的解剖区域引导的空间特征。我们通过利用可用的小规模器官级注释来采用半监督的学习方法,将解剖区域定位在没有器官级注释的大规模数据集中。拟议的解剖学XNET使用预先训练的Densenet-121作为骨干网络,具有两个相应的结构化模块,解剖学意识到($^3 $)和概率加权平均池(PWAP),在凝聚力框架中引起解剖学的关注学习。我们通过实验表明,我们提出的方法通过在三个公开可用的大规模CXR数据集中获得85.78%,92.07%和84.04%的AUC得分来设置新的最先进基准测试。和模拟CXR。这不仅证明了利用解剖学分割知识来改善胸病疾病分类的功效,而且还证明了所提出的框架的普遍性。
translated by 谷歌翻译
预训练为深入学习支持的X线射线分析中最近的成功奠定了基础。它通过在源域上进行大规模完全监督或自我监督的学习来学习可转移的图像表示。然而,监督的预培训需要复杂和劳动密集的两级人类辅助注释过程,而自我监督的学习不能与监督范例竞争。为了解决这些问题,我们提出了一个跨监督的方法,命名为审查监督(指的)的自由文本报告,该报告从射线照相中获取来自原始放射学报告的自由监督信号。该方法采用了视觉变压器,旨在从每个患者研究中的多种视图中学习联合表示。在极其有限的监督下,引用其在4个众所周知的X射线数据集上的转移学习和自我监督学习对应。此外,甚至是基于具有人辅助结构标签的射线照相的源区的甚至超越方法。因此,有可能取代规范的预训练方法。
translated by 谷歌翻译
长期椎骨骨折严重影响了患者的生活质量,导致脑诊断,腰椎畸形甚至瘫痪。计算机断层扫描(CT)是在早期筛查该疾病的常见临床检查。但是,微弱的放射学表现和非特异性症状导致遗体诊断的高风险。特别是,对于深度学习模型和缺乏经验的医生而言,轻度骨折和正常对照很难区分。在本文中,我们认为增强微弱的断裂特征以鼓励阶层间的可分离性是提高准确性的关键。在此激励的情况下,我们提出了一个基于对比度学习的监督模型,以通过CT扫描估算Genent的椎骨骨折等级。作为一项辅助任务,受监督的对比学习在将其他人推开的同时缩小了同一类中特征的距离,从而增强了模型捕获椎骨骨折的微妙特征的能力。考虑到该领域缺乏数据集,我们构建了一个数据库,其中包括经验丰富的放射科医生注释的208个样本。我们的方法的特异性为99 \%,在二元分类中的敏感性为85%,在多分类中的Macio-F1为77 \%,表明对比度学习显着提高了椎骨骨折筛选的准确性,尤其是在轻度断裂和正常对照。我们的脱敏数据和代码将公开为社区提供。
translated by 谷歌翻译