Adaptive partial linear beamforming meets the need of 5G and future 6G applications for high flexibility and adaptability. Choosing an appropriate tradeoff between conflicting goals opens the recently proposed multiuser (MU) detection method. Due to their high spatial resolution, nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity. However, a dramatic decrease in performance can be expected in high mobility scenarios because they are very susceptible to changes in the wireless channel. The robustness of linear filters is required, considering these changes. One way to respond appropriately is to use online machine learning algorithms. The theory of algorithms based on the adaptive projected subgradient method (APSM) is rich, and they promise accurate tracking capabilities in dynamic wireless environments. However, one of the main challenges comes from the real-time implementation of these algorithms, which involve projections on time-varying closed convex sets. While the projection operations are relatively simple, their vast number poses a challenge in ultralow latency (ULL) applications where latency constraints must be satisfied in every radio frame. Taking non-orthogonal multiple access (NOMA) systems as an example, this paper explores the acceleration of APSM-based algorithms through massive parallelization. The result is a GPUaccelerated real-time implementation of an orthogonal frequency-division multiplexing (OFDM)based transceiver that enables detection latency of less than one millisecond and therefore complies with the requirements of 5G and beyond. To meet the stringent physical layer latency requirements, careful co-design of hardware and software is essential, especially in virtualized wireless systems with hardware accelerators.
translated by 谷歌翻译
我们推导了非负神经网络的固定点的存在条件,这是一个重要的研究目标,了解了涉及自动化器和循环展开技术的现代应用中神经网络的行为。特别是,我们表明,具有非负输入和非负参数的神经网络可以在非线性珀罗尼乌斯理论的框架内被识别为单调和(弱)可扩展的功能。这一事实使我们能够推导出存在非空白神经网络的非空的固定点集的条件,并且这些条件比最近使用凸分析中的参数获得的条件较弱,这通常是基于激活函数的非扩张性的假设。此外,我们证明了单调和弱可伸缩的神经网络的固定点集的形状通常是一个间隔,其为可伸缩网络的情况的点退化。本文的首席结果在数值模拟中验证,我们考虑了一种自动型型网络,首先将角度功率谱压缩在大规模的MIMO系统中,并且第二,从压缩信号重建输入光谱。
translated by 谷歌翻译
为化疗中的许多重要任务收集标记数据是耗时的,需要昂贵的实验。近年来,机器学习已被用来使用大规模未标记的分子数据集学习分子的丰富表示,并转移知识,以解决有限数据集的更具挑战性的任务。变形AutoEncoders是已经提出用于进行化学性质预测和分子产生任务的转移的工具之一。在这项工作中,我们提出了一种简单的方法,可以通过在变形自身偏析者学习的表示中包含关于相关分子描述符的附加信息来改善机器学习模型的化学性质预测性能。我们验证了三个属性预测的方法询问。我们探讨了合并的描述符的数量,描述符和目标属性之间的相关性,数据集等的尺寸的影响。最后,我们显示了性能预测模型的性能与属性预测数据集之间的距离和更大的未标记之间的关系。 DataSet在表示空间中。
translated by 谷歌翻译
制定了具有机器学习模拟(骆驼)项目的宇宙学和天体物理学,通过数千名宇宙的流体动力模拟和机器学习将宇宙学与天体物理学结合起来。骆驼包含4,233个宇宙学仿真,2,049个n-body和2,184个最先进的流体动力模拟,在参数空间中采样巨大的体积。在本文中,我们介绍了骆驼公共数据发布,描述了骆驼模拟的特性和由它们产生的各种数据产品,包括光环,次麦,银河系和空隙目录,功率谱,Bispectra,Lyman - $ \ Alpha $光谱,概率分布函数,光环径向轮廓和X射线光子列表。我们还释放了超过骆驼 - 山姆的数十亿个星系的目录:与Santa Cruz半分析模型相结合的大量N身体模拟。我们释放包含350多个Terabytes的所有数据,并包含143,922个快照,数百万光环,星系和摘要统计数据。我们提供有关如何访问,下载,读取和处理数据AT \ URL {https://camels.readthedocs.io}的进一步技术详细信息。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译
现实和仿真之间的差异妨碍了固态量子器件的优化和可扩展性。因材料缺陷不可预测的分布引起的紊乱是现实缺口的主要贡献之一。我们使用物理知识的机器学习来弥合这个差距,特别是使用组合物理模型,深度学习,高斯随机场和贝叶斯推断的方法。该方法使我们能够从电子传输数据推断纳米级电子设备的无序电位。通过验证算法关于AlGAAS / GaAs中的横向定义的量子点设备所需的栅极电压值来验证该推断,以产生与双量子点状态对应的电流特征。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
最近的证据表明,SARS-COV-2是2020年导致全球大流行病的病毒,主要经由室内环境中的空气机气溶胶传播。在评估和控制建筑物的室内空气质量(IAQ)时,这需要新颖的策略。 IAQ通常可以通过通风和/或政策来控制以调节人建筑物相互作用。然而,在建筑物中,占用者使用其他方式使用房间,可能并不明显哪种措施或对措施的组合导致成本和能源有效的解决方案,确保整个建筑物的良好IAQ。因此,在本文中,我们介绍了一种基于代理的模拟器,亚拟合,旨在帮助通过估计足够的房间尺寸,通风参数和测试政策的效果来帮助创造新的或适应现有建筑物,同时考虑到IAQ的结果复杂的人建筑物相互作用模式。最近公开的气溶胶模型适于计算每个房间中的时间依赖性二氧化碳($ CO_2 $)和病毒量子浓度,每天吸入$ CO_2 $和病毒量子,作为生理反应的衡量标准。由于其模块化架构,Archabm对气溶胶模型和建筑布局具有灵活性,这允许实现进一步的模型,任何数字和房间,代理和操作的行动,反映人建筑物交互模式。我们提供了一个基于我们研究中心采用的真正平面计划和工作时间表的用例。本研究表明,先进的仿真工具如何有助于改善建筑物的IAQ,从而确保健康的室内环境。
translated by 谷歌翻译
医疗AI通过支持基于证据的医学实践,个性化患者治疗,降低成本以及改善提供者和患者体验,推进医疗保健的巨大潜力。我们认为解锁此潜力需要一种系统的方法来衡量在大规模异构数据上的医疗AI模型的性能。为了满足这种需求,我们正在建立Medperf,这是一个开放的框架,用于在医疗领域的基准测试机器学习。 Medperf将使联合评估能够将模型安全地分配给不同的评估设施,从而赋予医疗组织在高效和人类监督过程中评估和验证AI模型的性能,同时优先考虑隐私。我们描述了当前的挑战医疗保健和AI社区面临,需要开放平台,Medperf的设计理念,其目前的实施状态和我们的路线图。我们呼吁研究人员和组织加入我们创建Medperf开放基准平台。
translated by 谷歌翻译