标准化流是构建概率和生成模型的流行方法。但是,由于需要计算雅各布人的计算昂贵决定因素,因此对流量的最大似然训练是具有挑战性的。本文通过引入一种受到两样本测试启发的流动训练的方法来解决这一挑战。我们框架的核心是能源目标,这是适当评分规则的多维扩展,该规则基于随机预测,可以接受有效的估计器,并且超过了一系列可以在我们的框架中得出的替代两样本目标。至关重要的是,能量目标及其替代方案不需要计算决定因素,因此支持不适合最大似然训练的一般流量体系结构(例如,密度连接的网络)。我们从经验上证明,能量流达到竞争性生成建模性能,同时保持快速产生和后部推断。
translated by 谷歌翻译
机器学习的许多应用涉及预测模型输出的灵活概率分布。我们提出了自动评级分位式流动,这是一种灵活的概率模型,高维变量,可用于准确地捕获预测的炼膜不确定性。这些模型是根据适当评分规则使用新颖目标培训的自回归流动的情况,这简化了培训期间雅各比亚的计算昂贵的决定因素,并支持新型的神经结构。我们证明这些模型可用于参数化预测条件分布,提高时间序列预测和对象检测的概率预测质量。
translated by 谷歌翻译
Humans form mental images of 3D scenes to support counterfactual imagination, planning, and motor control. Our abilities to predict the appearance and affordance of the scene from previously unobserved viewpoints aid us in performing manipulation tasks (e.g., 6-DoF kitting) with a level of ease that is currently out of reach for existing robot learning frameworks. In this work, we aim to build artificial systems that can analogously plan actions on top of imagined images. To this end, we introduce Mental Imagery for Robotic Affordances (MIRA), an action reasoning framework that optimizes actions with novel-view synthesis and affordance prediction in the loop. Given a set of 2D RGB images, MIRA builds a consistent 3D scene representation, through which we synthesize novel orthographic views amenable to pixel-wise affordances prediction for action optimization. We illustrate how this optimization process enables us to generalize to unseen out-of-plane rotations for 6-DoF robotic manipulation tasks given a limited number of demonstrations, paving the way toward machines that autonomously learn to understand the world around them for planning actions.
translated by 谷歌翻译
Computational fluid dynamics (CFD) is a valuable asset for patient-specific cardiovascular-disease diagnosis and prognosis, but its high computational demands hamper its adoption in practice. Machine-learning methods that estimate blood flow in individual patients could accelerate or replace CFD simulation to overcome these limitations. In this work, we consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models. We employ group-equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes and makes efficient use of training data. We run experiments on a large dataset of synthetic coronary arteries and find that our method estimates directional wall shear stress (WSS) with an approximation error of 7.6% and normalised mean absolute error (NMAE) of 0.4% while up to two orders of magnitude faster than CFD. Furthermore, we show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions. These results demonstrate the potential of our proposed method as a plugin replacement for CFD in the personalised prediction of hemodynamic vector and scalar fields.
translated by 谷歌翻译
Cross-lingual transfer learning without labeled target language data or parallel text has been surprisingly effective in zero-shot cross-lingual classification, question answering, unsupervised machine translation, etc. However, some recent publications have claimed that domain mismatch prevents cross-lingual transfer, and their results show that unsupervised bilingual lexicon induction (UBLI) and unsupervised neural machine translation (UNMT) do not work well when the underlying monolingual corpora come from different domains (e.g., French text from Wikipedia but English text from UN proceedings). In this work, we show that a simple initialization regimen can overcome much of the effect of domain mismatch in cross-lingual transfer. We pre-train word and contextual embeddings on the concatenated domain-mismatched corpora, and use these as initializations for three tasks: MUSE UBLI, UN Parallel UNMT, and the SemEval 2017 cross-lingual word similarity task. In all cases, our results challenge the conclusions of prior work by showing that proper initialization can recover a large portion of the losses incurred by domain mismatch.
translated by 谷歌翻译
Learning image representations using synthetic data allows training neural networks without some of the concerns associated with real images, such as privacy and bias. Existing work focuses on a handful of curated generative processes which require expert knowledge to design, making it hard to scale up. To overcome this, we propose training with a large dataset of twenty-one thousand programs, each one generating a diverse set of synthetic images. These programs are short code snippets, which are easy to modify and fast to execute using OpenGL. The proposed dataset can be used for both supervised and unsupervised representation learning, and reduces the gap between pre-training with real and procedurally generated images by 38%.
translated by 谷歌翻译
Asymmetrical distance structures (quasimetrics) are ubiquitous in our lives and are gaining more attention in machine learning applications. Imposing such quasimetric structures in model representations has been shown to improve many tasks, including reinforcement learning (RL) and causal relation learning. In this work, we present four desirable properties in such quasimetric models, and show how prior works fail at them. We propose Interval Quasimetric Embedding (IQE), which is designed to satisfy all four criteria. On three quasimetric learning experiments, IQEs show strong approximation and generalization abilities, leading to better performance and improved efficiency over prior methods. Project Page: https://www.tongzhouwang.info/interval_quasimetric_embedding Quasimetric Learning Code Package: https://www.github.com/quasimetric-learning/torch-quasimetric
translated by 谷歌翻译
Federated Learning (FL) is a scheme for collaboratively training Deep Neural Networks (DNNs) with multiple data sources from different clients. Instead of sharing the data, each client trains the model locally, resulting in improved privacy. However, recently so-called targeted poisoning attacks have been proposed that allow individual clients to inject a backdoor into the trained model. Existing defenses against these backdoor attacks either rely on techniques like Differential Privacy to mitigate the backdoor, or analyze the weights of the individual models and apply outlier detection methods that restricts these defenses to certain data distributions. However, adding noise to the models' parameters or excluding benign outliers might also reduce the accuracy of the collaboratively trained model. Additionally, allowing the server to inspect the clients' models creates a privacy risk due to existing knowledge extraction methods. We propose CrowdGuard, a model filtering defense, that mitigates backdoor attacks by leveraging the clients' data to analyze the individual models before the aggregation. To prevent data leaks, the server sends the individual models to secure enclaves, running in client-located Trusted Execution Environments. To effectively distinguish benign and poisoned models, even if the data of different clients are not independently and identically distributed (non-IID), we introduce a novel metric called HLBIM to analyze the outputs of the DNN's hidden layers. We show that the applied significance-based detection algorithm combined can effectively detect poisoned models, even in non-IID scenarios. We show in our extensive evaluation that CrowdGuard can effectively mitigate targeted poisoning attacks and achieve in various scenarios a True-Positive-Rate of 100% and a True-Negative-Rate of 100%.
translated by 谷歌翻译
我们介绍了一种新的图像取证方法:将物理折射物(我们称为图腾)放入场景中,以保护该场景拍摄的任何照片。图腾弯曲并重定向光线,因此在单个图像中提供了多个(尽管扭曲)的多个(尽管扭曲)。防守者可以使用这些扭曲的图腾像素来检测是否已操纵图像。我们的方法通过估计场景中的位置并使用其已知的几何和材料特性来估算其位置,从而使光线通过图腾的光线不十障。为了验证图腾保护的图像,我们从图腾视点重建的场景与场景的外观从相机的角度来检测到不一致之处。这样的方法使对抗性操纵任务更加困难,因为对手必须以几何一致的方式对图腾和图像像素进行修改,而又不知道图腾的物理特性。与先前的基于学习的方法不同,我们的方法不需要在特定操作的数据集上进行培训,而是使用场景和相机的物理属性来解决取证问题。
translated by 谷歌翻译
有限混合物建模是聚类领域的一种流行方法,并且在很大程度上是由于其软聚类成员资格概率所致。但是,EM算法是适合有限混合模型的最常见算法,是许多问题的受害者。我们解决了使用有限混合模型的困扰聚类的这些问题,包括在高维情况下与局部最大值和算法速度问题相对应的解决方案的收敛。这是通过开发两种新型算法来完成的,这些算法结合了数据矩阵的光谱分解和非参数bootstrap采样方案。模拟显示了我们的算法的有效性,不仅证明了它们的灵活性,而且还证明了与其他(自举)聚类算法相比,它们避免了与局部墨西哥相对应的溶液的能力。我们的新型算法通常具有更一致的收敛标准,并且在适合有限混合模型的其他自举算法中,速度显着提高。
translated by 谷歌翻译