As the basis for prehensile manipulation, it is vital to enable robots to grasp as robustly as humans. In daily manipulation, our grasping system is prompt, accurate, flexible and continuous across spatial and temporal domains. Few existing methods cover all these properties for robot grasping. In this paper, we propose a new methodology for grasp perception to enable robots these abilities. Specifically, we develop a dense supervision strategy with real perception and analytic labels in the spatial-temporal domain. Additional awareness of objects' center-of-mass is incorporated into the learning process to help improve grasping stability. Utilization of grasp correspondence across observations enables dynamic grasp tracking. Our model, AnyGrasp, can generate accurate, full-DoF, dense and temporally-smooth grasp poses efficiently, and works robustly against large depth sensing noise. Embedded with AnyGrasp, we achieve a 93.3% success rate when clearing bins with over 300 unseen objects, which is comparable with human subjects under controlled conditions. Over 900 MPPH is reported on a single-arm system. For dynamic grasping, we demonstrate catching swimming robot fish in the water.
translated by 谷歌翻译
估计看不见对象的6D姿势对许多现实世界应用非常有需求。但是,当前的最新姿势估计方法只能处理以前训练的对象。在本文中,我们提出了一项新任务,以使算法能够估计测试过程中新颖对象的6D姿势估计。我们收集一个具有真实图像和合成图像的数据集,并且在测试集中最多可见48个看不见的对象。同时,我们提出了一个名为infimum Add(IADD)的新指标,这是对具有不同类型姿势歧义的对象的不变测量。还提供了针对此任务的两个阶段基线解决方案。通过训练端到端的3D对应网络,我们的方法可以准确有效地找到看不见的对象和部分视图RGBD图像之间的相应点。然后,它使用算法鲁棒到对象对称性从对应关系中计算6D姿势。广泛的实验表明,我们的方法的表现优于几个直观基线,从而验证其有效性。所有数据,代码和模型都将公开可用。项目页面:www.graspnet.net/unseen6d
translated by 谷歌翻译
我们介绍了日常桌面对象的998 3D型号的数据集及其847,000个现实世界RGB和深度图像。每个图像的相机姿势和对象姿势的准确注释都以半自动化方式执行,以促进将数据集用于多种3D应用程序,例如形状重建,对象姿势估计,形状检索等。3D重建由于缺乏适当的现实世界基准来完成该任务,并证明我们的数据集可以填补该空白。整个注释数据集以及注释工具和评估基线的源代码可在http://www.ocrtoc.org/3d-reconstruction.html上获得。
translated by 谷歌翻译
Traffic flow prediction is an important part of smart transportation. The goal is to predict future traffic conditions based on historical data recorded by sensors and the traffic network. As the city continues to build, parts of the transportation network will be added or modified. How to accurately predict expanding and evolving long-term streaming networks is of great significance. To this end, we propose a new simulation-based criterion that considers teaching autonomous agents to mimic sensor patterns, planning their next visit based on the sensor's profile (e.g., traffic, speed, occupancy). The data recorded by the sensor is most accurate when the agent can perfectly simulate the sensor's activity pattern. We propose to formulate the problem as a continuous reinforcement learning task, where the agent is the next flow value predictor, the action is the next time-series flow value in the sensor, and the environment state is a dynamically fused representation of the sensor and transportation network. Actions taken by the agent change the environment, which in turn forces the agent's mode to update, while the agent further explores changes in the dynamic traffic network, which helps the agent predict its next visit more accurately. Therefore, we develop a strategy in which sensors and traffic networks update each other and incorporate temporal context to quantify state representations evolving over time.
translated by 谷歌翻译
Machine learning approaches are widely studied in the production prediction of CBM wells after hydraulic fracturing, but merely used in practice due to the low generalization ability and the lack of interpretability. A novel methodology is proposed in this article to discover the latent causality from observed data, which is aimed at finding an indirect way to interpret the machine learning results. Based on the theory of causal discovery, a causal graph is derived with explicit input, output, treatment and confounding variables. Then, SHAP is employed to analyze the influence of the factors on the production capability, which indirectly interprets the machine learning models. The proposed method can capture the underlying nonlinear relationship between the factors and the output, which remedies the limitation of the traditional machine learning routines based on the correlation analysis of factors. The experiment on the data of CBM shows that the detected relationship between the production and the geological/engineering factors by the presented method, is coincident with the actual physical mechanism. Meanwhile, compared with traditional methods, the interpretable machine learning models have better performance in forecasting production capability, averaging 20% improvement in accuracy.
translated by 谷歌翻译
Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging task in computer vision. Mainstream approaches follow a multi-stage framework and suffer from high training costs. In this paper, we explore the potential of Contrastive Language-Image Pre-training models (CLIP) to localize different categories with only image-level labels and without any further training. To efficiently generate high-quality segmentation masks from CLIP, we propose a novel framework called CLIP-ES for WSSS. Our framework improves all three stages of WSSS with special designs for CLIP: 1) We introduce the softmax function into GradCAM and exploit the zero-shot ability of CLIP to suppress the confusion caused by non-target classes and backgrounds. Meanwhile, to take full advantage of CLIP, we re-explore text inputs under the WSSS setting and customize two text-driven strategies: sharpness-based prompt selection and synonym fusion. 2) To simplify the stage of CAM refinement, we propose a real-time class-aware attention-based affinity (CAA) module based on the inherent multi-head self-attention (MHSA) in CLIP-ViTs. 3) When training the final segmentation model with the masks generated by CLIP, we introduced a confidence-guided loss (CGL) to mitigate noise and focus on confident regions. Our proposed framework dramatically reduces the cost of training for WSSS and shows the capability of localizing objects in CLIP. Our CLIP-ES achieves SOTA performance on Pascal VOC 2012 and MS COCO 2014 while only taking 10% time of previous methods for the pseudo mask generation. Code is available at https://github.com/linyq2117/CLIP-ES.
translated by 谷歌翻译
Key performance indicators(KPIs) are of great significance in the monitoring of wireless network service quality. The network service quality can be improved by adjusting relevant configuration parameters(CPs) of the base station. However, there are numerous CPs and different cells may affect each other, which bring great challenges to the association analysis of wireless network data. In this paper, we propose an adjustable multi-level association rule mining framework, which can quantitatively mine association rules at each level with environmental information, including engineering parameters and performance management(PMs), and it has interpretability at each level. Specifically, We first cluster similar cells, then quantify KPIs and CPs, and integrate expert knowledge into the association rule mining model, which improve the robustness of the model. The experimental results in real world dataset prove the effectiveness of our method.
translated by 谷歌翻译
In this paper, we study two challenging but less-touched problems in image restoration, namely, i) how to quantify the relationship between different image degradations and ii) how to improve the performance of a specific restoration task using the quantified relationship. To tackle the first challenge, Degradation Relationship Index (DRI) is proposed to measure the degradation relationship, which is defined as the drop rate difference in the validation loss between two models, i.e., one is trained using the anchor task only and another is trained using the anchor and the auxiliary tasks. Through quantifying the relationship between different degradations using DRI, we empirically observe that i) the degradation combination proportion is crucial to the image restoration performance. In other words, the combinations with only appropriate degradation proportions could improve the performance of the anchor restoration; ii) a positive DRI always predicts the performance improvement of image restoration. Based on the observations, we propose an adaptive Degradation Proportion Determination strategy (DPD) which could improve the performance of the anchor restoration task by using another restoration task as auxiliary. Extensive experimental results verify the effective of our method by taking image dehazing as the anchor task and denoising, desnowing, and deraining as the auxiliary tasks. The code will be released after acceptance.
translated by 谷歌翻译
Previous work on action representation learning focused on global representations for short video clips. In contrast, many practical applications, such as video alignment, strongly demand learning the intensive representation of long videos. In this paper, we introduce a new framework of contrastive action representation learning (CARL) to learn frame-wise action representation in a self-supervised or weakly-supervised manner, especially for long videos. Specifically, we introduce a simple but effective video encoder that considers both spatial and temporal context by combining convolution and transformer. Inspired by the recent massive progress in self-supervised learning, we propose a new sequence contrast loss (SCL) applied to two related views obtained by expanding a series of spatio-temporal data in two versions. One is the self-supervised version that optimizes embedding space by minimizing KL-divergence between sequence similarity of two augmented views and prior Gaussian distribution of timestamp distance. The other is the weakly-supervised version that builds more sample pairs among videos using video-level labels by dynamic time wrapping (DTW). Experiments on FineGym, PennAction, and Pouring datasets show that our method outperforms previous state-of-the-art by a large margin for downstream fine-grained action classification and even faster inference. Surprisingly, although without training on paired videos like in previous works, our self-supervised version also shows outstanding performance in video alignment and fine-grained frame retrieval tasks.
translated by 谷歌翻译
方面情感三胞胎提取(ASTE)旨在提取方面,意见及其情感关系作为情感三胞胎的跨度。现有的作品通常将跨度检测作为1D令牌标记问题制定,并使用令牌对的2D标记矩阵对情感识别进行建模。此外,通过利用诸如伯特(Bert)之类的审计语言编码器(PLES)的代表形式,它们可以实现更好的性能。但是,他们只是利用将功能提取器作为提取器来构建其模块,但从未深入了解特定知识所包含的内容。在本文中,我们争辩说,与其进一步设计模块以捕获ASTE的电感偏见,不如包含“足够”的“足够”功能,用于1D和2D标记:(1)令牌表示包含令牌本身的上下文含义,因此此级别,因此此级别功能带有必要的信息以进行1D标记。 (2)不同PLE层的注意力矩阵可以进一步捕获令牌对中存在的多层次语言知识,从而使2D标记受益。 (3)此外,对于简单的转换,这两个功能也可以很容易地转换为2D标记矩阵和1D标记序列。这将进一步提高标签结果。通过这样做,PLE可以是自然的标记框架并实现新的最新状态,通过广泛的实验和深入分析来验证。
translated by 谷歌翻译