Machine learning approaches are widely studied in the production prediction of CBM wells after hydraulic fracturing, but merely used in practice due to the low generalization ability and the lack of interpretability. A novel methodology is proposed in this article to discover the latent causality from observed data, which is aimed at finding an indirect way to interpret the machine learning results. Based on the theory of causal discovery, a causal graph is derived with explicit input, output, treatment and confounding variables. Then, SHAP is employed to analyze the influence of the factors on the production capability, which indirectly interprets the machine learning models. The proposed method can capture the underlying nonlinear relationship between the factors and the output, which remedies the limitation of the traditional machine learning routines based on the correlation analysis of factors. The experiment on the data of CBM shows that the detected relationship between the production and the geological/engineering factors by the presented method, is coincident with the actual physical mechanism. Meanwhile, compared with traditional methods, the interpretable machine learning models have better performance in forecasting production capability, averaging 20% improvement in accuracy.
translated by 谷歌翻译
基于可解释的机器学习,提出了一种名为InterOPT优化操作参数的算法,并通过优化页岩气体开发来证明。InterOpt由三个部分组成:神经网络用于构建矢量空间中实际钻孔和液压压裂过程的模拟器(即虚拟环境);可解释的机器学习中的Sharpley价值方法用于分析每个井中地质和操作参数的影响(即单个井功能影响分析);并进行集合随机最大似然(ENRML)以优化操作参数,以全面提高页岩气发展的效率并降低平均成本。在实验中,InterOPT根据其特定地质条件为每个井提供了不同的钻孔和破裂计划,并最终在104井的案例研究中获得了9.7%的平均成本降低9.7%。
translated by 谷歌翻译
在科学研究和现实世界应用的许多领域中,非实验数据的因果效应的无偏估计对于理解数据的基础机制以及对有效响应或干预措施的决策至关重要。从不同角度对这个具有挑战性的问题进行了大量研究。对于数据中的因果效应估计,始终做出诸如马尔可夫财产,忠诚和因果关系之类的假设。在假设下,仍然需要一组协变量或基本因果图之类的全部知识。一个实用的挑战是,在许多应用程序中,没有这样的全部知识或只有某些部分知识。近年来,研究已经出现了基于图形因果模型的搜索策略,以从数据中发现有用的知识,以进行因果效应估计,并具有一些温和的假设,并在应对实际挑战方面表现出了诺言。在这项调查中,我们回顾了方法,并关注数据驱动方法所面临的挑战。我们讨论数据驱动方法的假设,优势和局限性。我们希望这篇综述将激励更多的研究人员根据图形因果建模设计更好的数据驱动方法,以解决因果效应估计的具有挑战性的问题。
translated by 谷歌翻译
本文研究了通过机器学习模型估计特征对特定实例预测的贡献的问题,以及功能对模型的总体贡献。特征(变量)对预测结果的因果效应反映了该特征对预测的贡献。一个挑战是,如果没有已知的因果图,就无法从数据中估算大多数现有的因果效应。在本文中,我们根据假设的理想实验定义了解释性因果效应。该定义给不可知论的解释带来了一些好处。首先,解释是透明的,具有因果关系。其次,解释性因果效应估计可以数据驱动。第三,因果效应既提供了特定预测的局部解释,又提供了一个全局解释,显示了一个特征在预测模型中的总体重要性。我们进一步提出了一种基于解释性因果效应来解释的方法和组合变量的方法。我们显示了对某些现实世界数据集的实验的定义和方法。
translated by 谷歌翻译
即使有效,模型的使用也必须伴随着转换数据的各个级别的理解(上游和下游)。因此,需求增加以定义单个数据与算法可以根据其分析可以做出的选择(例如,一种产品或一种促销报价的建议,或代表风险的保险费率)。模型用户必须确保模型不会区分,并且也可以解释其结果。本文介绍了模型解释的重要性,并解决了模型透明度的概念。在保险环境中,它专门说明了如何使用某些工具来强制执行当今可以利用机器学习的精算模型的控制。在一个简单的汽车保险中损失频率估计的示例中,我们展示了一些解释性方法的兴趣,以适应目标受众的解释。
translated by 谷歌翻译
我们介绍了一种声音和完整的算法,称为迭代因果发现(ICD),用于在存在潜在混杂器和选择偏压的情况下恢复因果图。 ICD依赖于因果性马尔可夫和忠诚的假设,并恢复潜在因果图的等价类别。它以完整的图形开始,由单个迭代阶段组成,通过识别连接节点之间的条件独立性(CI)逐渐改进该图。任何迭代后都需要的独立性和因果关系是正确的,随时渲染ICD。基本上,我们将CI调节的大小与测试节点绑定到图表上的距离,并在连续迭代中提高此值。因此,每次迭代都改进了通过具有较小调节集的先前迭代恢复的图 - 一种更高的统计功率 - 这有助于稳定性。我们凭经验证明ICD需要较少的CI测试,并与FCI,FCI +和RFCI算法相比,学习更准确的因果图。
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译
我们的许多实验旨在发现数据生成机制(即现象)背后的原因和效果。最重要的是,阐明一个模型,该模型可以使我们能够进一步探索手头上的现象和/或允许我们准确预测它。从根本上讲,这种模型可能是通过因果方法来得出的(与观察或经验平均值相反)。在这种方法中,需要因果发现来创建因果模型,然后可以应用该因果模型来推断干预措施的影响,并回答我们可能拥有的任何假设问题(即以什么IFS的形式)。本文为因果发现和因果推断提供了一个案例,并与传统的机器学习方法进行了对比。都是从公民和结构工程的角度来看。更具体地说,本文概述了因果关系的关键原理以及因果发现和因果推断的最常用算法和包。最后,本文还提出了一系列示例和案例研究,介绍了如何为我们的领域采用因果概念。
translated by 谷歌翻译
元学习用于通过组合数据和先验知识来有效地自动选择机器学习模型。由于传统的元学习技术缺乏解释性,并且在透明度和公平性方面存在缺点,因此实现元学习的解释性至关重要。本文提出了一个可解释的元学习框架,该框架不仅可以解释元学习算法选择的建议结果,而且还可以对建议算法在特定数据集中的性能和业务场景中更完整,更准确地解释。通过广泛的实验证明了该框架的有效性和正确性。
translated by 谷歌翻译
在机构研究模式中,为了探索哪些特征是预测具有高维,不平衡分类的小型样本的学生行为数据集的最佳指标,它将大学生的学术风险预测转化为二元分类任务。基于LightGBM模型的学术风险及福利价值的可解释机学习方法预测。仿真结果表明,从全球的预测模型的角度来看,学术伙伴的质量等特点,课堂上的座位位置,宿舍学习氛围,学院入学员的英语分数,学术伙伴的数量,视频游戏的成瘾水平,学术伙伴的流动性,以及逃学程度是学术风险最佳的8个预测因子。它违背了生活在校园里或没有工作,工作研究,口红成瘾,学生领导者,情人金额和吸烟的特征与本实验中的大学学术风险几乎没有相关。从样本的局部视角来看,影响学术风险的因素因人的人而异。它可以通过传统的数学统计预测模型来执行个性化的可解释分析,这不能通过传统的数学统计预测模型来完成。本研究的学术贡献主要是在两个方面:首先,第一次提出学习互动网络,使社会行为可用于弥补单方面的个人行为,提高学术风险预测的性能。其次,福利价值计算的引入使机器学习缺乏明确的推理过程可视化,并为教育管理者提供直观的决策支持。
translated by 谷歌翻译
考虑基于AI和ML的决策对这些新兴技术的安全和可接受的使用的决策的社会和道德后果至关重要。公平,特别是保证ML决定不会导致对个人或少数群体的歧视。使用因果关系,可以更好地实现和衡量可靠的公平/歧视,从而更好地实现了敏感属性(例如性别,种族,宗教等)之间的因果关系,仅仅是仅仅是关联,例如性别,种族,宗教等(例如,雇用工作,贷款授予等) )。然而,对因果关系解决公平性的最大障碍是因果模型的不可用(通常表示为因果图)。文献中现有的因果关系方法并不能解决此问题,并假设可获得因果模型。在本文中,我们没有做出这样的假设,并且我们回顾了从可观察数据中发现因果关系的主要算法。这项研究的重点是因果发现及其对公平性的影响。特别是,我们展示了不同的因果发现方法如何导致不同的因果模型,最重要的是,即使因果模型之间的轻微差异如何对公平/歧视结论产生重大影响。通过使用合成和标准公平基准数据集的经验分析来巩固这些结果。这项研究的主要目标是强调因果关系使用因果关系适当解决公平性的因果发现步骤的重要性。
translated by 谷歌翻译
不观察到的混淆是观测数据的因果效应估计的主要障碍。仪器变量(IVS)广泛用于存在潜在混淆时的因果效应估计。利用标准IV方法,当给定的IV有效时,可以获得无偏估计,但标准IV的有效性要求是严格和不可能的。已经提出了通过调节一组观察变量(称为条件IV的调节装置)来放松标准IV的要求。然而,用于查找条件IV的调节集的标准需要完整的因果结构知识或指向的非循环图(DAG),其代表观察到和未观察的变量的因果关系。这使得无法发现直接从数据设置的调节。在本文中,通过利用潜在变量的因果推断中的最大祖先图(MAGS),我们提出了一种新型的MAG中的IV,祖先IV,并开发了支持给定祖传的调节装置的数据驱动的发现iv在mag。基于该理论,我们在MAG和观测数据中开发了一种与祖先IV的非偏见因果效应估计的算法。与现有IV方法相比,对合成和实际数据集的广泛实验表明了算法的性能。
translated by 谷歌翻译
了解因果关系有助于构建干预措施,以实现特定的目标并在干预下实现预测。随着学习因果关系的越来越重要,因果发现任务已经从使用传统方法推断出潜在的因果结构从观察数据到深度学习涉及的模式识别领域。大量数据的快速积累促进了具有出色可扩展性的因果搜索方法的出现。因果发现方法的现有摘要主要集中在基于约束,分数和FCM的传统方法上,缺乏针对基于深度学习的方法的完美分类和阐述,还缺乏一些考虑和探索因果关系的角度来探索因果发现方法范式。因此,我们根据变量范式将可能的因果发现任务分为三种类型,并分别给出三个任务的定义,定义和实例化每个任务的相关数据集以及同时构建的最终因果模型,然后审查不同任务的主要因果发现方法。最后,我们从不同角度提出了一些路线图,以解决因果发现领域的当前研究差距,并指出未来的研究方向。
translated by 谷歌翻译
在个性化决策中,需要证据来确定诉讼(治疗)是否适合个人。可以通过对亚组中的治疗效应异质性进行建模来获得此类证据。现有的可解释的建模方法采用自上而下的方法来寻找具有异质治疗效果的亚组,它们可能会错过个人最具体和最相关的环境。在本文中,我们设计了\ emph {治疗效果模式(TEP)}来表示数据中的治疗效果异质性。为了实现TEP的可解释呈现,我们使用围绕结果的局部因果结构,以明确说明如何在建模中使用这些重要变量。我们还得出了一个公正估计\ emph {条件平均因果效应(CATE)}的公式,它使用我们的问题设置中的局部结构进行了估计。在发现过程中,我们旨在最大程度地减少以模式表示的每个子组中的异质性。我们提出了一种自下而上的搜索算法,以发现适合个性化决策的最具体情况的最特定模式。实验表明,所提出的方法模型治疗效果的异质性比合成和现实世界数据集中的其他三种基于树的方法更好。
translated by 谷歌翻译
Causal learning has attracted much attention in recent years because causality reveals the essential relationship between things and indicates how the world progresses. However, there are many problems and bottlenecks in traditional causal learning methods, such as high-dimensional unstructured variables, combinatorial optimization problems, unknown intervention, unobserved confounders, selection bias and estimation bias. Deep causal learning, that is, causal learning based on deep neural networks, brings new insights for addressing these problems. While many deep learning-based causal discovery and causal inference methods have been proposed, there is a lack of reviews exploring the internal mechanism of deep learning to improve causal learning. In this article, we comprehensively review how deep learning can contribute to causal learning by addressing conventional challenges from three aspects: representation, discovery, and inference. We point out that deep causal learning is important for the theoretical extension and application expansion of causal science and is also an indispensable part of general artificial intelligence. We conclude the article with a summary of open issues and potential directions for future work.
translated by 谷歌翻译
Building an accurate model of travel behaviour based on individuals' characteristics and built environment attributes is of importance for policy-making and transportation planning. Recent experiments with big data and Machine Learning (ML) algorithms toward a better travel behaviour analysis have mainly overlooked socially disadvantaged groups. Accordingly, in this study, we explore the travel behaviour responses of low-income individuals to transit investments in the Greater Toronto and Hamilton Area, Canada, using statistical and ML models. We first investigate how the model choice affects the prediction of transit use by the low-income group. This step includes comparing the predictive performance of traditional and ML algorithms and then evaluating a transit investment policy by contrasting the predicted activities and the spatial distribution of transit trips generated by vulnerable households after improving accessibility. We also empirically investigate the proposed transit investment by each algorithm and compare it with the city of Brampton's future transportation plan. While, unsurprisingly, the ML algorithms outperform classical models, there are still doubts about using them due to interpretability concerns. Hence, we adopt recent local and global model-agnostic interpretation tools to interpret how the model arrives at its predictions. Our findings reveal the great potential of ML algorithms for enhanced travel behaviour predictions for low-income strata without considerably sacrificing interpretability.
translated by 谷歌翻译
虽然数据驱动的材料科学和化学方法采用了令人兴奋的,早期的阶段,实现了机器学习模型的真正潜力,以实现科学发现,它们必须具有超出纯粹预测力的品质。模型的预测和内在工作应由人类专家提供一定程度的解释性,允许识别潜在的模型问题或限制,建立对模型预测的信任和揭示可能导致科学洞察力的意外相关性。在这项工作中,我们总结了对材料科学和化学的可解释性和解释性技术的应用,并讨论了这些技术如何改善科学研究的结果。我们讨论了材料科学中可解释机器学习的各种挑战,更广泛地在科学环境中。特别是,我们强调通过纯粹解释机器学习模型和模型解释的不确定性估计的不确定估计来强调推断因果关系或达到泛化的风险。最后,我们在其他领域展示了一些可能会使物质科学和化学问题的可解释性的令人兴奋的发展。
translated by 谷歌翻译
In this review, we discuss approaches for learning causal structure from data, also called causal discovery. In particular, we focus on approaches for learning directed acyclic graphs (DAGs) and various generalizations which allow for some variables to be unobserved in the available data. We devote special attention to two fundamental combinatorial aspects of causal structure learning. First, we discuss the structure of the search space over causal graphs. Second, we discuss the structure of equivalence classes over causal graphs, i.e., sets of graphs which represent what can be learned from observational data alone, and how these equivalence classes can be refined by adding interventional data.
translated by 谷歌翻译
因果关系是理解世界的科学努力的基本组成部分。不幸的是,在心理学和社会科学中,因果关系仍然是禁忌。由于越来越多的建议采用因果方法进行研究的重要性,我们重新制定了心理学研究方法的典型方法,以使不可避免的因果理论与其余的研究渠道协调。我们提出了一个新的过程,该过程始于从因果发现和机器学习的融合中纳入技术的发展,验证和透明的理论形式规范。然后,我们提出将完全指定的理论模型的复杂性降低到与给定目标假设相关的基本子模型中的方法。从这里,我们确定利息量是否可以从数据中估算出来,如果是的,则建议使用半参数机器学习方法来估计因果关系。总体目标是介绍新的研究管道,该管道可以(a)促进与测试因果理论的愿望兼容的科学询问(b)鼓励我们的理论透明代表作为明确的数学对象,(c)将我们的统计模型绑定到我们的统计模型中该理论的特定属性,因此减少了理论到模型间隙通常引起的规范不足问题,以及(d)产生因果关系和可重复性的结果和估计。通过具有现实世界数据的教学示例来证明该过程,我们以摘要和讨论来结论。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译