本文介绍了一种系统集成方法,用于一种6-DOF(自由度)协作机器人,以操作移液液的移液液。它的技术发展是三倍。首先,我们设计了用于握住和触发手动移液器的最终效果。其次,我们利用协作机器人的优势来识别基于公认姿势的实验室姿势和计划的机器人运动。第三,我们开发了基于视觉的分类器来预测和纠正定位误差,从而精确地附着在一次性技巧上。通过实验和分析,我们确认开发的系统,尤其是计划和视觉识别方法,可以帮助确保高精度和柔性液体分配。开发的系统适用于低频,高更改的生化液体分配任务。我们预计它将促进协作机器人的部署进行实验室自动化,从而提高实验效率,而不会显着自定义实验室环境。
translated by 谷歌翻译
Classification bandits are multi-armed bandit problems whose task is to classify a given set of arms into either positive or negative class depending on whether the rate of the arms with the expected reward of at least h is not less than w for given thresholds h and w. We study a special classification bandit problem in which arms correspond to points x in d-dimensional real space with expected rewards f(x) which are generated according to a Gaussian process prior. We develop a framework algorithm for the problem using various arm selection policies and propose policies called FCB and FTSV. We show a smaller sample complexity upper bound for FCB than that for the existing algorithm of the level set estimation, in which whether f(x) is at least h or not must be decided for every arm's x. Arm selection policies depending on an estimated rate of arms with rewards of at least h are also proposed and shown to improve empirical sample complexity. According to our experimental results, the rate-estimation versions of FCB and FTSV, together with that of the popular active learning policy that selects the point with the maximum variance, outperform other policies for synthetic functions, and the version of FTSV is also the best performer for our real-world dataset.
translated by 谷歌翻译
Drug-Drug Interactions (DDIs) prediction is an essential issue in the molecular field. Traditional methods of observing DDIs in medical experiments require plenty of resources and labor. In this paper, we present a computational model dubbed MedKGQA based on Graph Neural Networks to automatically predict the DDIs after reading multiple medical documents in the form of multi-hop machine reading comprehension. We introduced a knowledge fusion system to obtain the complete nature of drugs and proteins and exploited a graph reasoning system to infer the drugs and proteins contained in the documents. Our model significantly improves the performance compared to previous state-of-the-art models on the QANGAROO MedHop dataset, which obtained a 4.5% improvement in terms of DDIs prediction accuracy.
translated by 谷歌翻译
Background and objective: COVID-19 and its variants have caused significant disruptions in over 200 countries and regions worldwide, affecting the health and lives of billions of people. Detecting COVID-19 from chest X-Ray (CXR) images has become one of the fastest and easiest methods for detecting COVID-19 since the common occurrence of radiological pneumonia findings in COVID-19 patients. We present a novel high-accuracy COVID-19 detection method that uses CXR images. Methods: Our method consists of two phases. One is self-supervised learning-based pertaining; the other is batch knowledge ensembling-based fine-tuning. Self-supervised learning-based pretraining can learn distinguished representations from CXR images without manually annotated labels. On the other hand, batch knowledge ensembling-based fine-tuning can utilize category knowledge of images in a batch according to their visual feature similarities to improve detection performance. Unlike our previous implementation, we introduce batch knowledge ensembling into the fine-tuning phase, reducing the memory used in self-supervised learning and improving COVID-19 detection accuracy. Results: On two public COVID-19 CXR datasets, namely, a large dataset and an unbalanced dataset, our method exhibited promising COVID-19 detection performance. Our method maintains high detection accuracy even when annotated CXR training images are reduced significantly (e.g., using only 10% of the original dataset). In addition, our method is insensitive to changes in hyperparameters. Conclusions: The proposed method outperforms other state-of-the-art COVID-19 detection methods in different settings. Our method can reduce the workloads of healthcare providers and radiologists.
translated by 谷歌翻译
Purpose: Considering several patients screened due to COVID-19 pandemic, computer-aided detection has strong potential in assisting clinical workflow efficiency and reducing the incidence of infections among radiologists and healthcare providers. Since many confirmed COVID-19 cases present radiological findings of pneumonia, radiologic examinations can be useful for fast detection. Therefore, chest radiography can be used to fast screen COVID-19 during the patient triage, thereby determining the priority of patient's care to help saturated medical facilities in a pandemic situation. Methods: In this paper, we propose a new learning scheme called self-supervised transfer learning for detecting COVID-19 from chest X-ray (CXR) images. We compared six self-supervised learning (SSL) methods (Cross, BYOL, SimSiam, SimCLR, PIRL-jigsaw, and PIRL-rotation) with the proposed method. Additionally, we compared six pretrained DCNNs (ResNet18, ResNet50, ResNet101, CheXNet, DenseNet201, and InceptionV3) with the proposed method. We provide quantitative evaluation on the largest open COVID-19 CXR dataset and qualitative results for visual inspection. Results: Our method achieved a harmonic mean (HM) score of 0.985, AUC of 0.999, and four-class accuracy of 0.953. We also used the visualization technique Grad-CAM++ to generate visual explanations of different classes of CXR images with the proposed method to increase the interpretability. Conclusions: Our method shows that the knowledge learned from natural images using transfer learning is beneficial for SSL of the CXR images and boosts the performance of representation learning for COVID-19 detection. Our method promises to reduce the incidence of infections among radiologists and healthcare providers.
translated by 谷歌翻译
This paper solves a generalized version of the problem of multi-source model adaptation for semantic segmentation. Model adaptation is proposed as a new domain adaptation problem which requires access to a pre-trained model instead of data for the source domain. A general multi-source setting of model adaptation assumes strictly that each source domain shares a common label space with the target domain. As a relaxation, we allow the label space of each source domain to be a subset of that of the target domain and require the union of the source-domain label spaces to be equal to the target-domain label space. For the new setting named union-set multi-source model adaptation, we propose a method with a novel learning strategy named model-invariant feature learning, which takes full advantage of the diverse characteristics of the source-domain models, thereby improving the generalization in the target domain. We conduct extensive experiments in various adaptation settings to show the superiority of our method. The code is available at https://github.com/lzy7976/union-set-model-adaptation.
translated by 谷歌翻译
The black-box nature of end-to-end speech translation (E2E ST) systems makes it difficult to understand how source language inputs are being mapped to the target language. To solve this problem, we would like to simultaneously generate automatic speech recognition (ASR) and ST predictions such that each source language word is explicitly mapped to a target language word. A major challenge arises from the fact that translation is a non-monotonic sequence transduction task due to word ordering differences between languages -- this clashes with the monotonic nature of ASR. Therefore, we propose to generate ST tokens out-of-order while remembering how to re-order them later. We achieve this by predicting a sequence of tuples consisting of a source word, the corresponding target words, and post-editing operations dictating the correct insertion points for the target word. We examine two variants of such operation sequences which enable generation of monotonic transcriptions and non-monotonic translations from the same speech input simultaneously. We apply our approach to offline and real-time streaming models, demonstrating that we can provide explainable translations without sacrificing quality or latency. In fact, the delayed re-ordering ability of our approach improves performance during streaming. As an added benefit, our method performs ASR and ST simultaneously, making it faster than using two separate systems to perform these tasks.
translated by 谷歌翻译
数据集复杂性评估旨在在训练分类器之前先预测具有复杂性计算的数据集上的分类性能,该分类器也可以用于分类器选择和减少数据集。深卷积神经网络(DCNN)的训练过程是迭代的且耗时的,这是由于高参数的不确定性和不同数据集引入的域移位。因此,通过在培训DCNN模型之前有效评估数据集的复杂性来预测分类性能是有意义的。本文提出了一种新的方法,称为Laplacian Spectrum(CMSAUL)下的累积最大缩放区域,该方法可以在六个数据集上实现最新的复杂性评估性能。
translated by 谷歌翻译
背景和目标:需要分享医疗数据以实现医疗保健信息的跨机构流量并构建高准确的计算机辅助诊断系统。但是,大量的医疗数据集,保存深度卷积神经网络(DCNN)模型的大量记忆以及患者的隐私保护是可能导致医疗数据共享效率低下的问题。因此,本研究提出了一种新型的软标签数据集蒸馏方法,用于医疗数据共享。方法:所提出的方法提炼医疗图像数据的有效信息,并生成几个带有不同数据分布的压缩图像,以供匿名医疗数据共享。此外,我们的方法可以提取DCNN模型的基本权重,以减少保存训练有素的模型以进行有效的医疗数据共享所需的内存。结果:所提出的方法可以将数万张图像压缩为几个软标签图像,并将受过训练的模型的大小减少到其原始大小的几百分之一。蒸馏后获得的压缩图像已在视觉上匿名化;因此,它们不包含患者的私人信息。此外,我们可以通过少量压缩图像实现高检测性能。结论:实验结果表明,所提出的方法可以提高医疗数据共享的效率和安全性。
translated by 谷歌翻译
高级模型的采集取决于许多领域的大型数据集,这使存储数据集和培训模型昂贵。作为解决方案,数据集蒸馏可以合成一个小数据集,以便在其上训练有素的模型在与原始大型数据集的情况下达到高性能。通过匹配网络参数的最近提出的数据集蒸馏方法已被证明对多个数据集有效。但是,蒸馏过程中的一些参数很难匹配,这会损害蒸馏性能。基于此观察结果,本文提出了一种使用参数修剪来解决问题的新方法。提出的方法可以通过在蒸馏过程中修剪难以匹配的参数来合成更强大的蒸馏数据集并改善蒸馏性能。三个数据集的实验结果表明,所提出的方法的表现优于其他SOTA数据集蒸馏方法。
translated by 谷歌翻译