Classification bandits are multi-armed bandit problems whose task is to classify a given set of arms into either positive or negative class depending on whether the rate of the arms with the expected reward of at least h is not less than w for given thresholds h and w. We study a special classification bandit problem in which arms correspond to points x in d-dimensional real space with expected rewards f(x) which are generated according to a Gaussian process prior. We develop a framework algorithm for the problem using various arm selection policies and propose policies called FCB and FTSV. We show a smaller sample complexity upper bound for FCB than that for the existing algorithm of the level set estimation, in which whether f(x) is at least h or not must be decided for every arm's x. Arm selection policies depending on an estimated rate of arms with rewards of at least h are also proposed and shown to improve empirical sample complexity. According to our experimental results, the rate-estimation versions of FCB and FTSV, together with that of the popular active learning policy that selects the point with the maximum variance, outperform other policies for synthetic functions, and the version of FTSV is also the best performer for our real-world dataset.
translated by 谷歌翻译
级别设置估计问题旨在查找域$ {\ cal x} $的所有点,其中一个未知函数$ f:{\ cal x} \ lightarrow \ mathbb {r} $超过阈值$ \ alpha $ 。估计基于可以在$ {\ cal x} $中顺序和自适应地选择的位置获取的嘈杂函数评估。阈值$ \ alpha $可以是\弹性{显式},并提供先验,或\ \ ich {隐式},相对于最佳函数值定义,即$ \ alpha =(1- \ epsilon)f(x_ \ AST)$关于给定$ \ epsilon> 0 $ why $ f(x_ \ ist)$是最大函数值,并且未知。在这项工作中,我们通过将其与最近的自适应实验设计方法相关联,为近期自适应实验设计方法提供了一种新的再现内核盗窃空间(RKHS)设置。我们假设可以通过RKHS中的函数近似于未知的拼写,并为此设置中隐含和显式案件提供新的算法,具有很强的理论保证。此外,在线性(内核)设置中,我们表明我们的界限几乎是最佳的,即,我们的上限与阈值线性匪徒的现有下限匹配。据我们所知,这项工作提供了第一个实例依赖性非渐近的上限,就匹配信息理论下限的水平设定估计的样本复杂性。
translated by 谷歌翻译
本文调查$ \纺织品{污染} $随机多臂爆炸中最佳臂识别问题。在此设置中,从任何臂获得的奖励由来自概率$ \ varepsilon $的对抗性模型的样本所取代。考虑了固定的置信度(无限地平线)设置,其中学习者的目标是识别最大的平均值。由于奖励的对抗污染,每个ARM的平均值仅部分可识别。本文提出了两种算法,基于连续消除的基于间隙的算法和一个,以便在亚高斯匪徒中最佳臂识别。这些算法涉及平均估计,从渐近估计的估计值达到真实均值的偏差上实现最佳误差保证。此外,这些算法渐近地实现了最佳的样本复杂性。具体地,对于基于差距的算法,样本复杂性呈渐近最佳到恒定因子,而对于基于连续的基于算法,​​它是最佳的对数因子。最后,提供了数值实验以说明与现有基线相比的算法的增益。
translated by 谷歌翻译
我们以已知的奖励和未知的约束来研究顺序决策,这是由约束代表昂贵评估人类偏好(例如安全舒适的驾驶行为)的情况所激发的。我们将互动学习这些约束作为新的线性匪徒问题的挑战正式化,我们称之为约束的线性最佳臂识别。为了解决这个问题,我们提出了自适应约束学习(ACOL)算法。我们为约束线性最佳臂识别提供了一个依赖实例的下限,并表明Acol的样品复杂性与最坏情况下的下限匹配。在平均情况下,ACOL的样品复杂性结合仍然比简单方法的边界更紧密。在合成实验中,ACOL与Oracle溶液相同,并且表现优于一系列基准。作为应用程序,我们考虑学习限制,以代表驾驶模拟中的人类偏好。对于此应用,ACOL比替代方案要高得多。此外,我们发现学习偏好作为约束对驾驶场景的变化比直接编码奖励函数中的偏好更强大。
translated by 谷歌翻译
我们考虑优化从高斯过程(GP)采样的矢量值的目标函数$ \ boldsymbol {f} $ sampled的问题,其索引集是良好的,紧凑的度量空间$({\ cal x},d)$设计。我们假设$ \ boldsymbol {f} $之前未知,并且在Design $ x $的$ \ \ boldsymbol {f} $ x $导致$ \ boldsymbol {f}(x)$。由于当$ {\ cal x} $很大的基数时,识别通过详尽搜索的帕累托最优设计是不可行的,因此我们提出了一种称为Adaptive $ \ Boldsymbol {\ epsilon} $ - PAL的算法,从而利用GP的平滑度-Ampled函数和$({\ cal x},d)$的结构快速学习。从本质上讲,Adaptive $ \ Boldsymbol {\ epsilon} $ - PAL采用基于树的自适应离散化技术,以识别$ \ Boldsymbol {\ epsilon} $ - 尽可能少的评估中的准确帕累托一组设计。我们在$ \ boldsymbol {\ epsilon} $ - 准确的Pareto Set识别上提供信息类型和度量尺寸类型界限。我们还在实验表明我们的算法在多个基准数据集上优于其他Pareto Set识别方法。
translated by 谷歌翻译
我们考虑了持续的武装匪徒问题,在汇总反馈下的固定预算范围内推荐最好的武器。这是通过精确奖励不可能或获得昂贵的应用程序的激励,而可提供聚合奖励或反馈,例如子集的平均值。我们假设它们来自高斯进程并提出高斯工艺乐观优化(GPOO)算法来限制一组奖励功能。我们自适应地构造一个树的树,作为臂空间的子集,在那里反馈是节点代表的聚合奖励。我们为建议武器的汇总反馈提出了一个新的简单遗憾概念。我们为所提出的算法提供理论分析,并将单点反馈恢复为特殊情况。我们说明了GPoo并将其与模拟数据的相关算法进行比较。
translated by 谷歌翻译
本文研究了固定置信度设置中随机多臂匪徒中最佳的手臂识别(BAI)问题。考虑到指数匪徒的一般类。指数匪徒家族的最先进算法面临计算挑战。为了缓解这些挑战,提出了一个新颖的框架,该框架将BAI问题视为顺序假设测试,并且可以适合针对指数的土匪家族的可拖动分析。基于此框架,设计了BAI算法,以利用规范顺序概率比测试。该算法在两种设置中都具有三个功能:(1)其样本复杂性在渐近上是最佳的,(2)保证它是$ \ delta- $ pac,(3)它解决了最先进的计算挑战 - 艺术方法。具体而言,这些方法仅专注于高斯环境,需要从汤普森(Thompson)的手臂上进行采样,而这些方法被认为是最好的和挑战者的手臂。本文分析表明,识别挑战者在计算上是昂贵的,并且提出的算法对其进行了规定。最后,提供了数值实验来支持分析。
translated by 谷歌翻译
现有的组合纯探索方法主要集中在UCB方法上。为了提高算法,他们通常使用ARM SET $ S $内的上限限制的总和来表示$ S $的上限限制,这可能比$ S $的紧密上限限制大得多,并导致由于$ S $中不同武器的经验手段是独立的,因此复杂性要比必要的要高得多。为了应对这一挑战,我们探索了使用独立的随机样品而不是上限置信边界的汤普森采样(TS)的想法,并为(组合)纯探索设计了第一个基于TS的算法TS-TS-explore。在TS-explore中,ARM集合$ S $中的独立随机样品的总和不会超过具有高概率的$ S $的紧密上限限制。因此,它解决了上述挑战,并且比一般组合纯探索中现有的基于UCB的算法的复杂性更高。至于对经典多臂强盗的纯粹探索,我们表明TS-explore实现了渐近最佳的复杂性上限。
translated by 谷歌翻译
我们提出了置信度序列 - 置信区间序列,其均匀地随时间均匀 - 用于基于I.I.D的流的完整,完全有序集中的任何分布的量级。观察。我们提供用于跟踪固定定量的方法并同时跟踪所有定量。具体而言,我们提供具有小常数的明确表达式,其宽度以尽可能快的$ \ SQRT {t} \ log \ log t} $率,以及实证分布函数的非渐近浓度不等式以相同的速率均匀地持续持续。后者加强了Smirnov迭代对数的实证过程法,延长了DVORETZKY-KIEFER-WOLFOITZ不等式以均匀地保持一段时间。我们提供了一种新的算法和样本复杂性,用于在多武装强盗框架中选择具有大约最佳定量的臂。在仿真中,我们的方法需要比现有方法更少五到五十的样品。
translated by 谷歌翻译
我们考虑激励探索:一种多臂匪徒的版本,其中武器的选择由自私者控制,而算法只能发布建议。该算法控制信息流,信息不对称可以激励代理探索。先前的工作达到了最佳的遗憾率,直到乘法因素,这些因素根据贝叶斯先验而变得很大,并在武器数量上成倍规模扩展。采样每只手臂的一个更基本的问题一旦遇到了类似的因素。我们专注于激励措施的价格:出于激励兼容的目的,绩效的损失,广泛解释为。我们证明,如果用足够多的数据点初始化,则标准的匪徒汤普森采样是激励兼容的。因此,当收集这些数据点时,由于激励措施的绩效损失仅限于初始回合。这个问题主要降低到样本复杂性的问题:需要多少个回合?我们解决了这个问题,提供了匹配的上限和下限,并在各种推论中实例化。通常,最佳样品复杂性在“信念强度”中的武器数量和指数中是多项式。
translated by 谷歌翻译
We study the best-arm identification problem in multi-armed bandits with stochastic, potentially private rewards, when the goal is to identify the arm with the highest quantile at a fixed, prescribed level. First, we propose a (non-private) successive elimination algorithm for strictly optimal best-arm identification, we show that our algorithm is $\delta$-PAC and we characterize its sample complexity. Further, we provide a lower bound on the expected number of pulls, showing that the proposed algorithm is essentially optimal up to logarithmic factors. Both upper and lower complexity bounds depend on a special definition of the associated suboptimality gap, designed in particular for the quantile bandit problem, as we show when the gap approaches zero, best-arm identification is impossible. Second, motivated by applications where the rewards are private, we provide a differentially private successive elimination algorithm whose sample complexity is finite even for distributions with infinite support-size, and we characterize its sample complexity. Our algorithms do not require prior knowledge of either the suboptimality gap or other statistical information related to the bandit problem at hand.
translated by 谷歌翻译
多武装强盗环境中最好的武器识别问题是许多真实世界决策问题的一个优秀模式,但它无法捕捉到现实世界中,在学习时通常必须满足安全限制的事实。在这项工作中,我们研究了安全关键环境中最好的武器识别问题,代理的目标是找到许多人的最佳安全选项,同时以保证某些方式达到满足肯定的方式的探索,最初是未知的安全约束。我们首先在奖励和安全约束采用线性结构的情况下分析此问题,并显示近乎匹配的上限和下限。然后,我们分析了更多的常规版本,我们只假设奖励和安全约束可以通过单调函数建模,并在此设置中提出算法,保证安全地学习。我们的结论与实验结果表明我们在方案中的方法的有效性,如安全地识别许多人以便治疗疾病。
translated by 谷歌翻译
我们考虑多臂绷带(MAB)中最好的臂识别(Bai)问题的变体,其中有两组臂(源头和目标),目的是确定最佳目标臂,同时仅拉动源臂。在本文中,我们研究了设置的时候,尽管是未知的手段,但源和目标MAB实例之间存在已知的附加关系。我们展示了我们的框架如何涵盖一系列以前研究的纯粹探索问题,并且还捕获了新的问题。我们提出并理论上分析了LUCB风格的算法,以识别具有高概率的$ \ epsilon $ -optimal目标手臂。我们的理论分析强调了在典型的BAI设置中不会出现的这种转移学习问题的方面,但恢复了单个域Bai的Lucb算法作为特殊情况。
translated by 谷歌翻译
Data depth, introduced by Tukey (1975), is an important tool in data science, robust statistics, and computational geometry. One chief barrier to its broader practical utility is that many common measures of depth are computationally intensive, requiring on the order of $n^d$ operations to exactly compute the depth of a single point within a data set of $n$ points in $d$-dimensional space. Often however, we are not directly interested in the absolute depths of the points, but rather in their \textit{relative ordering}. For example, we may want to find the most central point in a data set (a generalized median), or to identify and remove all outliers (points on the fringe of the data set with low depth). With this observation, we develop a novel and instance-adaptive algorithm for adaptive data depth computation by reducing the problem of exactly computing $n$ depths to an $n$-armed stochastic multi-armed bandit problem which we can efficiently solve. We focus our exposition on simplicial depth, developed by \citet{liu1990notion}, which has emerged as a promising notion of depth due to its interpretability and asymptotic properties. We provide general instance-dependent theoretical guarantees for our proposed algorithms, which readily extend to many other common measures of data depth including majority depth, Oja depth, and likelihood depth. When specialized to the case where the gaps in the data follow a power law distribution with parameter $\alpha<2$, we show that we can reduce the complexity of identifying the deepest point in the data set (the simplicial median) from $O(n^d)$ to $\tilde{O}(n^{d-(d-1)\alpha/2})$, where $\tilde{O}$ suppresses logarithmic factors. We corroborate our theoretical results with numerical experiments on synthetic data, showing the practical utility of our proposed methods.
translated by 谷歌翻译
Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select configurations, we focus on speeding up random search through adaptive resource allocation and early-stopping. We formulate hyperparameter optimization as a pure-exploration nonstochastic infinite-armed bandit problem where a predefined resource like iterations, data samples, or features is allocated to randomly sampled configurations. We introduce a novel algorithm, Hyperband, for this framework and analyze its theoretical properties, providing several desirable guarantees. Furthermore, we compare Hyperband with popular Bayesian optimization methods on a suite of hyperparameter optimization problems. We observe that Hyperband can provide over an order-of-magnitude speedup over our competitor set on a variety of deep-learning and kernel-based learning problems.
translated by 谷歌翻译
积极的学习方法在减少学习所需的样本数量方面表现出了巨大的希望。随着自动化学习系统被采用到实时的现实世界决策管道中,越来越重要的是,这种算法的设计考虑到了安全性。在这项工作中,我们研究了在互动环境中学习最佳安全决定的复杂性。我们将这个问题减少到约束的线性匪徒问题,我们的目标是找到满足某些(未知)安全限制的最佳手臂。我们提出了一种基于自适应的实验性设计算法,在显示ARM的难度与次优的难度之间,我们表现出了有效的交易。据我们所知,我们的结果是具有安全限制的线性匪徒最佳武器识别。实际上,我们证明了这种方法在合成和现实世界数据集上的表现很好。
translated by 谷歌翻译
我们考虑腐烂奖励的无限多臂匪徒问题,其中手臂的平均奖励是根据任意趋势在每次拉动的手臂上减小的,最大腐烂速率$ \ varrho = o(1)$。我们表明,这个学习问题具有$ \ omega(\ max \ {\ varrho^{1/3} t,\ sqrt {t} \})$ worst-case遗憾的遗憾下降下降,其中$ t $是$ t $。我们表明,匹配的上限$ \ tilde {o}(\ max \ {\ varrho^{1/3} t,\ sqrt {t} \})$,最多可以通过多元素来实现当算法知道最大腐烂速率$ \ varrho $时,一种使用UCB索引的算法,该算法使用UCB索引和一个阈值来决定是否继续拉动手臂或从进一步考虑中移除手臂。我们还表明,$ \ tilde {o}(\ max \ {\ varrho^{1/3} t,t^{3/4} \})$遗憾的上限可以通过不知道的算法来实现$ \ varrho $的值通过使用自适应UCB索引以及自适应阈值值。
translated by 谷歌翻译
因果匪徒问题将因果推断与多军匪徒集成在一起。因果匪徒的纯粹探索是以下在线学习任务:给定一个因果关系分布未知的因果图,在每一轮中,我们可以选择干预一个变量或不进行干预,并观察所有随机变量的随机结果,并与所有随机变量进行观察使用尽可能少的回合的目标,我们可以输出一种干预措施,该干预措施在奖励变量$ y $上具有至少$ 1- \ delta $,其中$ \ delta $是一个最佳(或几乎是最好的)预期结果给定信心水平。我们在三种类型的因果模型,包括平行图,具有少量后门父母的常规图和二进制通用线性模型的三种类型的因果模型上提供了第一个完全依赖GAP的完全自适应纯探索算法。我们的算法改善了先前的因果匪徒算法,这些算法并非自适应奖励差距,也没有先前的自适应纯探索算法,它们不利用因果匪徒的特殊特征。
translated by 谷歌翻译
最近在文献中显示,在线学习实验的样本平均值在用于估计平均奖励时偏置。为了纠正偏差,违规评估方法,包括重要性采样和双倍稳健的估算,通常计算条件倾向分数,这对于UCB等非随机策略而言。本文提供了使用Bootstrap衰减样本的过程,这不需要对奖励分配的知识并应用于任何自适应策略。数值实验证明了受欢迎的多武装强盗算法产生的样本的有效偏差,例如探索 - 然后提交(ETC),UCB,Thompson采样(TS)和$ \ epsilon $ -Greedy(例如)。我们分析并提供了ETC算法下的程序的理论理由,包括真实和引导世界中偏差衰减率的渐近融合。
translated by 谷歌翻译
We investigate the sample complexity of learning the optimal arm for multi-task bandit problems. Arms consist of two components: one that is shared across tasks (that we call representation) and one that is task-specific (that we call predictor). The objective is to learn the optimal (representation, predictor)-pair for each task, under the assumption that the optimal representation is common to all tasks. Within this framework, efficient learning algorithms should transfer knowledge across tasks. We consider the best-arm identification problem for a fixed confidence, where, in each round, the learner actively selects both a task, and an arm, and observes the corresponding reward. We derive instance-specific sample complexity lower bounds satisfied by any $(\delta_G,\delta_H)$-PAC algorithm (such an algorithm identifies the best representation with probability at least $1-\delta_G$, and the best predictor for a task with probability at least $1-\delta_H$). We devise an algorithm OSRL-SC whose sample complexity approaches the lower bound, and scales at most as $H(G\log(1/\delta_G)+ X\log(1/\delta_H))$, with $X,G,H$ being, respectively, the number of tasks, representations and predictors. By comparison, this scaling is significantly better than the classical best-arm identification algorithm that scales as $HGX\log(1/\delta)$.
translated by 谷歌翻译