安全的加强学习(RL)研究智能代理人不仅必须最大程度地提高奖励,而且还要避免探索不安全领域的问题。在这项研究中,我们提出了CUP,这是一种基于约束更新投影框架的新型政策优化方法,享有严格的安全保证。我们杯杯发展的核心是新提出的替代功能以及性能结合。与以前的安全RL方法相比,杯子的好处1)杯子将代孕功能推广到广义优势估计量(GAE),从而导致强烈的经验性能。 2)杯赛统一性界限,为某些现有算法提供更好的理解和解释性; 3)CUP仅通过一阶优化器提供非凸的实现,该优化器不需要在目标的凸面上进行任何强近似。为了验证我们的杯子方法,我们将杯子与在各种任务上进行的安全RL基线的全面列表进行了比较。实验表明杯子在奖励和安全限制满意度方面的有效性。我们已经在https://github.com/rl-boxes/safe-rl/tree/ main/cup上打开了杯子源代码。
translated by 谷歌翻译
联合学习(FL)是一种趋势培训范式,用于利用分散培训数据。 FL允许客户端在本地更新几个时期的模型参数,然后将它们共享到全局模型以进行聚合。在聚集之前,该训练范式具有多本地步骤更新,使对抗性攻击暴露了独特的漏洞。对手训练是一种流行而有效的方法,可以提高网络对抗者的鲁棒性。在这项工作中,我们制定了一种一般形式的联邦对抗学习(FAL),该形式是从集中式环境中的对抗性学习改编而成的。在FL培训的客户端,FAL具有一个内部循环,可以生成对抗性样本进行对抗训练和外循环以更新本地模型参数。在服务器端,FAL汇总了本地模型更新并广播聚合的模型。我们设计了全球强大的训练损失,并将FAL培训作为最小最大优化问题。与依赖梯度方向的经典集中式培训中的收敛分析不同,由于三个原因,很难在FAL中分析FAL的收敛性:1)Min-Max优化的复杂性,2)模型未在梯度方向上更新聚合之前的客户端和3)客户间异质性的多局部更新。我们通过使用适当的梯度近似和耦合技术来应对这些挑战,并在过度参数化的制度中介绍收敛分析。从理论上讲,我们的主要结果表明,我们的算法下的最小损失可以收敛到$ \ epsilon $ Small,并具有所选的学习率和交流回合。值得注意的是,我们的分析对于非IID客户是可行的。
translated by 谷歌翻译
在本文中,我们介绍了全景语义细分,该分段以整体方式提供了对周围环境的全景和密集的像素的理解。由于两个关键的挑战,全景分割尚未探索:(1)全景上的图像扭曲和对象变形; (2)缺乏培训全景分段的注释。为了解决这些问题,我们提出了一个用于全景语义细分(Trans4Pass)体系结构的变压器。首先,为了增强失真意识,Trans4Pass配备了可变形的贴片嵌入(DPE)和可变形的MLP(DMLP)模块,能够在适应之前(适应之前或之后)和任何地方(浅层或深度级别的(浅层或深度))和图像变形(通过任何涉及(浅层或深层))和图像变形(通过任何地方)和图像变形设计。我们进一步介绍了升级后的Trans4Pass+模型,其中包含具有平行令牌混合的DMLPV2,以提高建模歧视性线索的灵活性和概括性。其次,我们提出了一种无监督域适应性的相互典型适应(MPA)策略。第三,除了针孔到型 - 帕诺amic(PIN2PAN)适应外,我们还创建了一个新的数据集(Synpass),其中具有9,080个全景图像,以探索360 {\ deg} Imagery中的合成对真实(Syn2real)适应方案。进行了广泛的实验,这些实验涵盖室内和室外场景,并且使用PIN2PAN和SYN2REAL方案进行了研究。 Trans4Pass+在四个域自适应的全景语义分割基准上实现最先进的性能。代码可从https://github.com/jamycheung/trans4pass获得。
translated by 谷歌翻译
人具有天生的感知周围环境的能力,因为他们可以从以自我为中心的感知中提取空间表示,并通过空间转换和内存更新形成同类语义图。但是,由于两个困难,赋予具有这种空间感应能力的移动试剂仍然是一个挑战:(1)先前的卷积模型受到局部接收场的限制,因此,在观察过程中努力捕获整体的长距离依赖性; (2)成功所需的过度计算预算通常会导致映射管道分为阶段,从而导致整个映射过程效率低下。为了解决这些问题,我们提出了一个基于映射的端到端一阶段变压器的框架,称为Trans4map。我们的以自我为中心的中心映射过程包括三个步骤:(1)有效的变压器从一批以自我为中心的图像中提取上下文特征; (2)提出的双向同类记忆(BAM)模块将自中心的特征投入到同类中心的内存中; (3)地图解码器解析了累积的内存并预测自上而下的语义分割图。相比之下,Trans4MAP取得了最新结果,减少了67.2%的参数,但在MatterPort3D数据集上获得了 +3.25%MIOU和A +4.09%MBF1的改进。代码将在https://github.com/jamycheung/trans4map上公开提供。
translated by 谷歌翻译
未能及时诊断并有效治疗抑郁症会导致全世界有超过2.8亿人患有这种心理障碍。抑郁症的信息提示可以从不同的异质资源(例如音频,视觉和文本数据)中收获,从而提高了对自动估计的新有效多模式融合方法的需求。在这项工作中,我们解决了从多模式数据中自动识别抑郁症的任务,并引入了一种接触机制,以连接异质信息,同时利用卷积双向LSTM作为我们的骨架。为了验证这一想法,我们对公共DAIC-WOZ基准进行了广泛的实验,以进行抑郁评估,该评估具有不同的评估模式,并考虑了特定性别的偏见。提出的模型在检测严重抑郁症和4.92 MAE时以0.89的精度和0.70 F1得分产生有效的结果。我们基于注意力的融合模块始终优于常规的晚期融合方法,并且与先前发表的抑郁估计框架相比,取得了竞争性能,同时学习诊断端到端的疾病并依靠较少的预处理步骤。
translated by 谷歌翻译
本文研究了客户表现出集群结构时联合学习下模型培训的问题。我们将这个问题与混合回归中的情况相关化,在混合回归中,每个客户端的本地数据限制了从$ k $未知回归模型之一生成的本地数据。我们设计了一种从任何初始化中实现全局收敛的算法,即使本地数据量高度不平衡,也可能存在包含$ o(1)$数据点的客户端。我们的算法首先在一些锚点客户端(每个都有$ \ tilde {\ omega}(k)$数据点)上运行MONM下降,以获取粗制的模型估计。然后,每个客户端交替估计其群集标签,并根据FedAvg或FedProx来完善模型估计。我们分析中的一个关键创新是对聚类误差的统一估计,我们通过基于代数几何理论来界定一般多项式概念类别的VC维度。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
本地功能匹配是在子像素级别上的计算密集任务。尽管基于检测器的方法和特征描述符在低文本场景中遇到了困难,但具有顺序提取到匹配管道的基于CNN的方法无法使用编码器的匹配能力,并且倾向于覆盖用于匹配的解码器。相比之下,我们提出了一种新型的层次提取和匹配变压器,称为火柴场。在层次编码器的每个阶段,我们将自我注意事项与特征提取和特征匹配的交叉注意相结合,从而产生了人直觉提取和匹配方案。这种匹配感知的编码器释放了过载的解码器,并使该模型高效。此外,将自我交叉注意在分层体系结构中的多尺度特征结合起来,可以提高匹配的鲁棒性,尤其是在低文本室内场景或更少的室外培训数据中。得益于这样的策略,MatchFormer是效率,鲁棒性和精度的多赢解决方案。与以前的室内姿势估计中的最佳方法相比,我们的Lite MatchFormer只有45%的Gflops,但获得了 +1.3%的精度增益和41%的运行速度提升。大型火柴构造器以四个不同的基准达到最新的基准,包括室内姿势估计(SCANNET),室外姿势估计(Megadepth),同型估计和图像匹配(HPATCH)和视觉定位(INLOC)。
translated by 谷歌翻译
传统的基于视频的人类活动识别与深度学习的兴起有关,但这种效果较慢,因为涉及驾驶员行为的下游任务。了解车辆机舱内部的情况对于高级驾驶助理系统(ADA)至关重要,因为它可以识别出干扰,预测驾驶员的意图并导致更方便的人车相互作用。同时,驾驶员观察系统需要捕获驾驶状态的不同粒度,而驾驶员观察系统则面临着严重的障碍,而此类次级活动的复杂性随着自动化的上升和增加的驾驶员自由而增长。此外,很少在与训练集中相同的条件下部署模型,因为传感器的放置和类型因车辆而异,因此构成了数据驱动模型的现实生活的实质性障碍。在这项工作中,我们提出了一个基于视觉的新型框架,用于识别基于视觉变压器的次级驱动器行为和额外的增强功能分布校准模块。该模块在潜在的功能空间丰富和多样化功能级的训练集中运行,以改善对新型数据出现(例如传感器变化)和一般功能质量的概括。我们的框架始终导致更好的识别率,超过了所有粒度水平上公共驱动器和ACT基准的先前最新结果。我们的代码可在https://github.com/kpeng9510/transdarc上公开获取。
translated by 谷歌翻译
大型预训练的变压器是现代语义分割基准的顶部,但具有高计算成本和冗长的培训。为了提高这种约束,我们从综合知识蒸馏的角度来研究有效的语义分割,并考虑弥合多源知识提取和特定于变压器特定的斑块嵌入之间的差距。我们提出了基于变压器的知识蒸馏(TransKD)框架,该框架通过蒸馏出大型教师变压器的特征地图和补丁嵌入来学习紧凑的学生变形金刚,绕过长期的预训练过程并将FLOPS降低> 85.0%。具体而言,我们提出了两个基本和两个优化模块:(1)交叉选择性融合(CSF)可以通过通道注意和层次变压器内的特征图蒸馏之间的知识转移; (2)嵌入对齐(PEA)在斑块过程中执行尺寸转换,以促进贴片嵌入蒸馏; (3)全局本地上下文混合器(GL-MIXER)提取了代表性嵌入的全局和局部信息; (4)嵌入助手(EA)是一种嵌入方法,可以无缝地桥接老师和学生模型,并具有老师的渠道数量。关于CityScapes,ACDC和NYUV2数据集的实验表明,TransKD的表现优于最先进的蒸馏框架,并竞争了耗时的预训练方法。代码可在https://github.com/ruipingl/transkd上找到。
translated by 谷歌翻译