未能及时诊断并有效治疗抑郁症会导致全世界有超过2.8亿人患有这种心理障碍。抑郁症的信息提示可以从不同的异质资源(例如音频,视觉和文本数据)中收获,从而提高了对自动估计的新有效多模式融合方法的需求。在这项工作中,我们解决了从多模式数据中自动识别抑郁症的任务,并引入了一种接触机制,以连接异质信息,同时利用卷积双向LSTM作为我们的骨架。为了验证这一想法,我们对公共DAIC-WOZ基准进行了广泛的实验,以进行抑郁评估,该评估具有不同的评估模式,并考虑了特定性别的偏见。提出的模型在检测严重抑郁症和4.92 MAE时以0.89的精度和0.70 F1得分产生有效的结果。我们基于注意力的融合模块始终优于常规的晚期融合方法,并且与先前发表的抑郁估计框架相比,取得了竞争性能,同时学习诊断端到端的疾病并依靠较少的预处理步骤。
translated by 谷歌翻译
双相情感障碍是一种心理健康障碍,导致情绪波动,从令人沮丧到狂热。双相障碍的诊断通常是根据患者访谈进行的,并从患者的护理人员获得的报告。随后,诊断取决于专家的经验,并且可以与其他精神障碍的疾病混淆。双极性障碍诊断中的自动化过程可以帮助提供定量指标,并让患者的更容易观察较长的时间。此外,在Covid-19大流行期间,对遥控和诊断的需求变得尤为重要。在本论文中,我们根据声学,语言和视觉方式的患者录制来创建一种多模态决策系统。该系统培养在双极障碍语料库上。进行综合分析单峰和多模式系统,以及各种融合技术。除了使用单向特征处理整个患者会话外,还研究了剪辑的任务级调查。在多模式融合系统中使用声学,语言和视觉特征,我们实现了64.8%的未加权平均召回得分,这提高了在该数据集上实现的最先进的性能。
translated by 谷歌翻译
人类通过不同的渠道表达感受或情绪。以语言为例,它在不同的视觉声学上下文下需要不同的情绪。为了精确了解人类意图,并减少歧义和讽刺引起的误解,我们应该考虑多式联路信号,包括文本,视觉和声学信号。至关重要的挑战是融合不同的特征模式以进行情绪分析。为了有效地融合不同的方式携带的信息,更好地预测情绪,我们设计了一种基于新的多主题的融合网络,这是由任何两个对方式之间的相互作用不同的观察来启发,它们是不同的,并且它们不同样有助于最终的情绪预测。通过分配具有合理关注和利用残余结构的声学 - 视觉,声学 - 文本和视觉文本特征,我们参加了重要的特征。我们对四个公共多模式数据集进行了广泛的实验,包括中文和三种英文中的一个。结果表明,我们的方法优于现有的方法,并可以解释双模相互作用在多种模式中的贡献。
translated by 谷歌翻译
主动演讲者的检测和语音增强已成为视听场景中越来越有吸引力的主题。根据它们各自的特征,独立设计的体系结构方案已被广泛用于与每个任务的对应。这可能导致模型特定于任务所学的表示形式,并且不可避免地会导致基于多模式建模的功能缺乏概括能力。最近的研究表明,建立听觉和视觉流之间的跨模式关系是针对视听多任务学习挑战的有前途的解决方案。因此,作为弥合视听任务中多模式关联的动机,提出了一个统一的框架,以通过在本研究中通过联合学习视听模型来实现目标扬声器的检测和语音增强。
translated by 谷歌翻译
口吃是一种言语障碍,在此期间,语音流被非自愿停顿和声音重复打断。口吃识别是一个有趣的跨学科研究问题,涉及病理学,心理学,声学和信号处理,使检测很难且复杂。机器和深度学习的最新发展已经彻底彻底改变了语音领域,但是对口吃的识别受到了最小的关注。这项工作通过试图将研究人员从跨学科领域聚集在一起来填补空白。在本文中,我们回顾了全面的声学特征,基于统计和深度学习的口吃/不足分类方法。我们还提出了一些挑战和未来的指示。
translated by 谷歌翻译
社交媒体网络已成为人们生活的重要方面,它是其思想,观点和情感的平台。因此,自动化情绪分析(SA)对于以其他信息来源无法识别人们的感受至关重要。对这些感觉的分析揭示了各种应用,包括品牌评估,YouTube电影评论和医疗保健应用。随着社交媒体的不断发展,人们以不同形式发布大量信息,包括文本,照片,音频和视频。因此,传统的SA算法已变得有限,因为它们不考虑其他方式的表现力。通过包括来自各种物质来源的此类特征,这些多模式数据流提供了新的机会,以优化基于文本的SA之外的预期结果。我们的研究重点是多模式SA的最前沿领域,该领域研究了社交媒体网络上发布的视觉和文本数据。许多人更有可能利用这些信息在这些平台上表达自己。为了作为这个快速增长的领域的学者资源,我们介绍了文本和视觉SA的全面概述,包括数据预处理,功能提取技术,情感基准数据集以及适合每个字段的多重分类方法的疗效。我们还简要介绍了最常用的数据融合策略,并提供了有关Visual Textual SA的现有研究的摘要。最后,我们重点介绍了最重大的挑战,并调查了一些重要的情感应用程序。
translated by 谷歌翻译
在本文中,我们介绍了2022年多模式情感分析挑战(MUSE)的解决方案,其中包括Muse-Humor,Muse-Rection和Muse Surns Sub-Challenges。 2022年穆斯穆斯(Muse 2022)着重于幽默检测,情绪反应和多模式的情感压力,利用不同的方式和数据集。在我们的工作中,提取了不同种类的多模式特征,包括声学,视觉,文本和生物学特征。这些功能由Temma和Gru融合到自发机制框架中。在本文中,1)提取了一些新的音频功能,面部表达功能和段落级文本嵌入以进行准确的改进。 2)我们通过挖掘和融合多模式特征来显着提高多模式情感预测的准确性和可靠性。 3)在模型培训中应用有效的数据增强策略,以减轻样本不平衡问题并防止模型形成学习有偏见的主题字符。对于博物馆的子挑战,我们的模型获得了0.8932的AUC分数。对于Muse Rection子挑战,我们在测试集上的Pearson相关系数为0.3879,它的表现优于所有其他参与者。对于Muse Surst Sub-Challenge,我们的方法在测试数据集上的唤醒和价值都优于基线,达到了0.5151的最终综合结果。
translated by 谷歌翻译
在空中交通管制(ATC)控制器飞行员谈话的自动语音指令的理解(SIU)不仅需要认识到的演讲词和语义,但也确定了演讲者的角色。然而,很少有在空中交通通信专注于扬声器的作用识别(SRI)自动认识系统发表的作品。在本文中,我们制定管制员 - 驾驶员通信的SRI任务作为二元分类问题。提出此外,基于文本的,基于语音和语音和文本为基础的多模态的方法来达到SRI任务的全面比较。消融的比较方法的影响,各种先进的神经网络架构应用进行优化的,基于语音的基于文本和方法的实现。最重要的是,多模态扬声器的作用识别网络(MMSRINet)设计同时考虑语音和文本模式功能实现的SRI任务。聚集形态特征,模态融合模块提出了保险丝和模态注意机制和自我关注池层,分别挤声音和文本表示。最后,比较的方法进行验证从现实世界ATC环境中收集的语料库ATCSpeech。实验结果表明,所有的比较方法是对SRI任务分别工作,并提议MMSRINet显示出比上都看到和看不到数据的其他方法的有竞争力的性能和稳定性,达到98.56%,98.08和%的准确度。
translated by 谷歌翻译
自动情绪识别(ER)最近由于其在许多实际应用中的潜力而引起了很多兴趣。在这种情况下,已经证明多模式方法可以通过结合多样化和互补的信息来源,从而提高性能(超过单峰方法),从而为嘈杂和缺失的方式提供了一些鲁棒性。在本文中,我们根据从视频中提取的面部和声音方式融合的尺寸ER专注于尺寸,其中探索了互补的视听(A-V)关系,以预测个人在价值空间中的情绪状态。大多数最先进的融合技术都依赖于反复的网络或常规的注意机制,这些机制无法有效利用A-V模式的互补性。为了解决这个问题,我们引入了A-V融合的联合跨注意模型,该模型在A-V模态上提取显着特征,从而可以有效利用模式间关系,同时保留模式内关系。特别是,它根据联合特征表示与单个模式的相关性计算交叉意义权重。通过将联合A-V特征表示形式部署到交叉意见模块中,它有助于同时利用内模式和模态关系,从而显着改善系统的性能,而不是香草交叉意见模块。我们提出的方法的有效性是在Recola和AffWild2数据集的挑战性视频中通过实验验证的。结果表明,我们的跨注意A-V融合模型提供了一种具有成本效益的解决方案,即使模式是嘈杂或不存在的,也可以超越最先进的方法。
translated by 谷歌翻译
多模式情感分析由于其在多模式相互作用中的信息互补性而具有广泛的应用。以前的作品更多地着重于研究有效的联合表示,但他们很少考虑非峰值提取和多模层融合的数据冗余性的不足。在本文中,提出了一个基于视频的跨模式辅助网络(VCAN),该网络由音频特征映射模块和跨模式选择模块组成。第一个模块旨在大大提高音频功能提取的特征多样性,旨在通过提供更全面的声学表示来提高分类精度。为了授权该模型处理冗余视觉功能,第二个模块是在集成视听数据时有效地过滤冗余视觉框架的。此外,引入了由几个图像分类网络组成的分类器组,以预测情感极性和情感类别。关于RAVDESS,CMU-MOSI和CMU-MOSEI基准的广泛实验结果表明,VCAN明显优于提高多模式情感分析的分类准确性的最新方法。
translated by 谷歌翻译
在急诊室(ER)环境中,中风分类或筛查是一个普遍的挑战。由于MRI的慢速吞吐量和高成本,通常会进行快速CT而不是MRI。在此过程中通常提到临床测试,但误诊率仍然很高。我们提出了一个新型的多模式深度学习框架,深沉的中风,以通过识别较小的面部肌肉不协调的模式来实现计算机辅助中风的存在评估,并使怀疑急性环境中的中风的患者无能为力。我们提出的深雷克斯(Deepstroke)在中风分流器中容易获得一分钟的面部视频数据和音频数据,用于局部面部瘫痪检测和全球语音障碍分析。采用了转移学习来减少面部侵蚀偏见并提高普遍性。我们利用多模式的横向融合来结合低水平和高级特征,并为关节训练提供相互正则化。引入了新型的对抗训练以获得无身份和中风的特征。与实际急诊室患者进行的视频ADIO数据集进行的实验表明,与分类团队和ER医生相比,中风的表现要优于最先进的模型,并且取得更好的性能,比传统的敏感性高出10.94%,高7.37%的精度高出7.37%。当特异性对齐时,中风分类。同时,每个评估都可以在不到六分钟的时间内完成,这表明该框架的临床翻译潜力很大。
translated by 谷歌翻译
这项工作对最近的努力进行了系统的综述(自2010年以来),旨在自动分析面对面共同关联的人类社交互动中显示的非语言提示。专注于非语言提示的主要原因是,这些是社会和心理现象的物理,可检测到的痕迹。因此,检测和理解非语言提示至少在一定程度上意味着检测和理解社会和心理现象。所涵盖的主题分为三个:a)建模社会特征,例如领导力,主导,人格特质,b)社会角色认可和社会关系检测以及c)群体凝聚力,同情,rapport和so的互动动态分析向前。我们针对共同的相互作用,其中相互作用的人永远是人类。该调查涵盖了各种各样的环境和场景,包括独立的互动,会议,室内和室外社交交流,二元对话以及人群动态。对于他们每个人,调查都考虑了非语言提示分析的三个主要要素,即数据,传感方法和计算方法。目的是突出显示过去十年的主要进步,指出现有的限制并概述未来的方向。
translated by 谷歌翻译
学习模当融合的表示和处理未对准的多模式序列在多式联情绪识别中是有意义的,具有挑战性。现有方法使用定向成对注意力或消息中心到熔丝语言,视觉和音频模态。然而,这些方法在融合特征时介绍信息冗余,并且在不考虑方式的互补性的情况下效率低效。在本文中,我们提出了一种高效的神经网络,以学习与CB变压器(LMR-CBT)的模型融合表示,用于从未对准的多模式序列进行多峰情绪识别。具体地,我们首先为三种方式执行特征提取,以获得序列的局部结构。然后,我们设计具有跨模块块(CB变压器)的新型变压器,其能够实现不同模式的互补学习,主要分为局部时间学习,跨模型特征融合和全球自我关注表示。此外,我们将融合功能与原始特征拼接以对序列的情绪进行分类。最后,我们在三个具有挑战性的数据集,IEMocap,CMU-MOSI和CMU-MOSEI进行词语对齐和未对准的实验。实验结果表明我们在两个设置中提出的方法的优势和效率。与主流方法相比,我们的方法以最小数量的参数达到最先进的。
translated by 谷歌翻译
在本文中,我们将解决方案介绍给Muse-Humor的多模式情感挑战(MUSE)2022的邮件,库穆尔人子挑战的目标是发现幽默并从德国足球馆的视听录音中计算出AUC新闻发布会。它是针对教练表现出的幽默的注释。对于此子挑战,我们首先使用变压器模块和BilstM模块构建一个判别模型,然后提出一种混合融合策略,以使用每种模式的预测结果来提高模型的性能。我们的实验证明了我们提出的模型和混合融合策略对多模式融合的有效性,并且我们在测试集中提出的模型的AUC为0.8972。
translated by 谷歌翻译
自动识别面部和声音的明显情绪很难,部分原因是各种不确定性来源,包括输入数据和机器学习框架中使用的标签。本文介绍了一种不确定性感知的视听融合方法,该方法量化了对情绪预测的模态不确定性。为此,我们提出了一个新颖的融合框架,在该框架中,我们首先通过视听时间上下文向量学习潜在分布,然后限制单峰潜在分布的方差向量,以便它们表示每种模式的信息量,以提供W.R.T.情绪识别。特别是,我们对视听潜在分布的方差向量施加了校准和序数排名约束。当经过良好校准时,将模态不确定性得分表明它们的相应预测可能与地面真实标签有多大不同。排名良好的不确定性得分允许在模式中对不同框架进行顺序排名。为了共同施加这两种约束,我们提出了软马克斯分布匹配损失。在分类和回归设置中,我们将不确定性感知的融合模型与标准模型 - 静态融合基线进行了比较。我们对两个情绪识别语料库(AVEC 2019 CES和IEMOCAP)的评估表明,视听情绪识别可以从良好的和良好的潜在不确定性度量中受益匪浅。
translated by 谷歌翻译
在情感计算领域的基于生理信号的情感识别,已经支付了相当大的关注。对于可靠性和用户友好的采集,电卸电子活动(EDA)在实际应用中具有很大的优势。然而,基于EDA的情感识别与数百个科目仍然缺乏有效的解决方案。在本文中,我们的工作试图融合主题的各个EDA功能和外部诱发的音乐功能。我们提出了端到端的多模式框架,1维剩余时间和通道注意网络(RTCAN-1D)。对于EDA特征,基于新型的基于凸优化的EDA(CVXEDA)方法被应用于将EDA信号分解为PAHSIC和TONC信号,以进行动态和稳定的功能。首先涉及基于EDA的情感识别的渠道时间关注机制,以改善时间和渠道明智的表示。对于音乐功能,我们将音乐信号与开源工具包opensmile处理,以获取外部特征向量。来自EDA信号和来自音乐的外部情绪基准的个体情感特征在分类层中融合。我们对三个多模式数据集(PMEMO,DEAP,AMIGOS)进行了系统的比较,适用于2级薪酬/唤醒情感识别。我们提出的RTCAN-1D优于现有的最先进的模型,这也验证了我们的工作为大规模情感认可提供了可靠和有效的解决方案。我们的代码已在https://github.com/guanghaoyin/rtcan-1发布。
translated by 谷歌翻译
睡眠是一种基本的生理过程,对于维持健康的身心至关重要。临床睡眠监测的黄金标准是多核桃摄影(PSG),基于哪个睡眠可以分为五个阶段,包括尾脉冲睡眠(REM睡眠)/非REM睡眠1(N1)/非REM睡眠2 (n2)/非REM睡眠3(n3)。然而,PSG昂贵,繁重,不适合日常使用。对于长期睡眠监测,无处不在的感测可以是解决方案。最近,心脏和运动感测在分类三阶段睡眠方面变得流行,因为两种方式都可以从研究级或消费者级设备中获得(例如,Apple Watch)。但是,为最大准确性融合数据的最佳仍然是一个打开的问题。在这项工作中,我们综合地研究了深度学习(DL)的高级融合技术,包括三种融合策略,三个融合方法以及三级睡眠分类,基于两个公共数据集。实验结果表明,通过融合心脏/运动传感方式可以可靠地分类三阶段睡眠,这可能成为在睡眠中进行大规模睡眠阶段评估研究或长期自动跟踪的实用工具。为了加快普遍存在/可穿戴计算社区的睡眠研究的进展,我们制作了该项目开源,可以在:https://github.com/bzhai/ubi-sleepnet找到代码。
translated by 谷歌翻译
早期发现焦虑症对于减少精神障碍患者的苦难并改善治疗结果至关重要。基于MHealth平台的焦虑筛查在提高筛选效率和降低筛查成本方面具有特殊实用价值。实际上,受试者的身体和心理评估中移动设备的差异以及数据质量不均匀的问题和现实世界中数据的少量数据量使现有方法无效。因此,我们提出了一个基于时空特征融合的框架,用于非触发焦虑。为了降低数据质量不平衡的影响,我们构建了一个基于“ 3DCNN+LSTM”的特征提取网络,并融合了面部行为和非接触式生理学的时空特征。此外,我们设计了一种相似性评估策略,以解决较小的数据样本量导致模型准确性下降的问题。我们的框架已通过现实世界中的机组数据集进行了验证,并且两个公共数据集UBFC-Phys和Swell-KW。实验结果表明,我们框架的总体性能要比最新的比较方法更好。
translated by 谷歌翻译
扬声器日流是一个标签音频或视频录制的任务,与扬声器身份或短暂的任务标记对应于扬声器标识的类,以识别“谁谈到何时发表讲话”。在早期,对MultiSpeaker录音的语音识别开发了扬声器日益衰退算法,以使扬声器自适应处理能够实现扬声器自适应处理。这些算法还将自己的价值作为独立应用程序随着时间的推移,为诸如音频检索等下游任务提供特定于扬声器的核算。最近,随着深度学习技术的出现,这在讲话应用领域的研究和实践中引起了革命性的变化,对扬声器日益改善已经进行了快速进步。在本文中,我们不仅审查了扬声器日益改善技术的历史发展,而且还审查了神经扬声器日益改善方法的最新进步。此外,我们讨论了扬声器日复速度系统如何与语音识别应用相结合,以及最近深度学习的激增是如何引领联合建模这两个组件互相互补的方式。通过考虑这种令人兴奋的技术趋势,我们认为本文对社区提供了有价值的贡献,以通过巩固具有神经方法的最新发展,从而促进更有效的扬声器日益改善进一步进展。
translated by 谷歌翻译
深度学习属于人工智能领域,机器执行通常需要某种人类智能的任务。类似于大脑的基本结构,深度学习算法包括一种人工神经网络,其类似于生物脑结构。利用他们的感官模仿人类的学习过程,深入学习网络被送入(感官)数据,如文本,图像,视频或声音。这些网络在不同的任务中优于最先进的方法,因此,整个领域在过去几年中看到了指数增长。这种增长在过去几年中每年超过10,000多种出版物。例如,只有在医疗领域中的所有出版物中覆盖的搜索引擎只能在Q3 2020中覆盖所有出版物的子集,用于搜索术语“深度学习”,其中大约90%来自过去三年。因此,对深度学习领域的完全概述已经不可能在不久的将来获得,并且在不久的将来可能会难以获得难以获得子场的概要。但是,有几个关于深度学习的综述文章,这些文章专注于特定的科学领域或应用程序,例如计算机愿景的深度学习进步或在物体检测等特定任务中进行。随着这些调查作为基础,这一贡献的目的是提供对不同科学学科的深度学习的第一个高级,分类的元调查。根据底层数据来源(图像,语言,医疗,混合)选择了类别(计算机愿景,语言处理,医疗信息和其他工程)。此外,我们还审查了每个子类别的常见架构,方法,专业,利弊,评估,挑战和未来方向。
translated by 谷歌翻译