To meet the fairly high safety and reliability requirements in practice, the state of health (SOH) estimation of Lithium-ion batteries (LIBs), which has a close relationship with the degradation performance, has been extensively studied with the widespread applications of various electronics. The conventional SOH estimation approaches with digital twin are end-of-cycle estimation that require the completion of a full charge/discharge cycle to observe the maximum available capacity. However, under dynamic operating conditions with partially discharged data, it is impossible to sense accurate real-time SOH estimation for LIBs. To bridge this research gap, we put forward a digital twin framework to gain the capability of sensing the battery's SOH on the fly, updating the physical battery model. The proposed digital twin solution consists of three core components to enable real-time SOH estimation without requiring a complete discharge. First, to handle the variable training cycling data, the energy discrepancy-aware cycling synchronization is proposed to align cycling data with guaranteeing the same data structure. Second, to explore the temporal importance of different training sampling times, a time-attention SOH estimation model is developed with data encoding to capture the degradation behavior over cycles, excluding adverse influences of unimportant samples. Finally, for online implementation, a similarity analysis-based data reconstruction has been put forward to provide real-time SOH estimation without requiring a full discharge cycle. Through a series of results conducted on a widely used benchmark, the proposed method yields the real-time SOH estimation with errors less than 1% for most sampling times in ongoing cycles.
translated by 谷歌翻译
The proliferation of smartphones has accelerated mobility studies by largely increasing the type and volume of mobility data available. One such source of mobility data is from GPS technology, which is becoming increasingly common and helps the research community understand mobility patterns of people. However, there lacks a standardized framework for studying the different mobility patterns created by the non-Work, non-Home locations of Working and Nonworking users on Workdays and Offdays using machine learning methods. We propose a new mobility metric, Daily Characteristic Distance, and use it to generate features for each user together with Origin-Destination matrix features. We then use those features with an unsupervised machine learning method, $k$-means clustering, and obtain three clusters of users for each type of day (Workday and Offday). Finally, we propose two new metrics for the analysis of the clustering results, namely User Commonality and Average Frequency. By using the proposed metrics, interesting user behaviors can be discerned and it helps us to better understand the mobility patterns of the users.
translated by 谷歌翻译
Unmanned air vehicles (UAVs) popularity is on the rise as it enables the services like traffic monitoring, emergency communications, deliveries, and surveillance. However, the unauthorized usage of UAVs (a.k.a drone) may violate security and privacy protocols for security-sensitive national and international institutions. The presented challenges require fast, efficient, and precise detection of UAVs irrespective of harsh weather conditions, the presence of different objects, and their size to enable SafeSpace. Recently, there has been significant progress in using the latest deep learning models, but those models have shortcomings in terms of computational complexity, precision, and non-scalability. To overcome these limitations, we propose a precise and efficient multiscale and multifeature UAV detection network for SafeSpace, i.e., \textit{MultiFeatureNet} (\textit{MFNet}), an improved version of the popular object detection algorithm YOLOv5s. In \textit{MFNet}, we perform multiple changes in the backbone and neck of the YOLOv5s network to focus on the various small and ignored features required for accurate and fast UAV detection. To further improve the accuracy and focus on the specific situation and multiscale UAVs, we classify the \textit{MFNet} into small (S), medium (M), and large (L): these are the combinations of various size filters in the convolution and the bottleneckCSP layers, reside in the backbone and neck of the architecture. This classification helps to overcome the computational cost by training the model on a specific feature map rather than all the features. The dataset and code are available as an open source: github.com/ZeeshanKaleem/MultiFeatureNet.
translated by 谷歌翻译
REED继电器是功能测试的基本组成部分,与电子产品的成功质量检查密切相关。为了为REED继电器提供准确的剩余使用寿命(RUL)估计,根据以下三个考虑,提出了具有降解模式聚类的混合深度学习网络。首先,对于REED继电器,观察到多种降解行为,因此提供了基于动态的$ K $ -MEANS聚类,以区分彼此的退化模式。其次,尽管适当的功能选择具有重要意义,但很少有研究可以指导选择。提出的方法建议进行操作规则,以实施轻松实施。第三,提出了用于剩余使用寿命估计的神经网络(RULNET),以解决卷积神经网络(CNN)在捕获顺序数据的时间信息中的弱点,该信息在卷积操作的高级特征表示后结合了时间相关能力。通过这种方式,lulnet的三种变体由健康指标,具有自组织地图的功能或具有曲线拟合的功能构建。最终,将提出的混合模型与典型的基线模型(包括CNN和长期记忆网络(LSTM))进行了比较,该模型通过具有两个不同不同降级方式的实用REED继电器数据集进行了比较。两种降解案例的结果表明,所提出的方法在索引均方根误差方面优于CNN和LSTM。
translated by 谷歌翻译
作为有关健康状况的重要组成部分,数据驱动的先进健康(SOH)估计已成为锂离子电池(LIBS)的主导地位。为了处理跨电池的数据差异,当前的SOH估计模型参与转移学习(TL),该模型保留通过重复使用离线训练模型的部分结构而获得的APRIORII知识。但是,电池完整生命周期的多种降解模式使追求TL的挑战。引入了阶段的概念来描述呈现出类似降解模式的连续循环的集合。提出了一个可转移的多级SOH估计模型,以在同一阶段跨电池执行TL,由四个步骤组成。首先,有了确定的阶段信息,将来自源电池的原始循环数据重建到具有高尺寸的相空间中,从而探索传感器有限的隐藏动力学。接下来,在每个阶段跨循环的域不变表示是通过与重建数据的循环差异子空间提出的。第三,考虑到不同阶段之间不平衡的放电循环,提出了一个由长期短期存储网络和具有拟议时间胶囊网络的强大模型组成的切换估计策略,以提高估计精度。最后,当目标电池的循环一致性漂移时,更新方案会补偿估计错误。提出的方法在各种传输任务中的竞争算法优于其竞争算法,用于带有三个电池的运营基准测试。
translated by 谷歌翻译
准确估计电池的健康状况(SOH)有助于防止电池供电的应用出乎意料的失败。随着减少新电池模型培训的数据需求的优势,转移学习(TL)是一种有前途的机器学习方法,该方法应用了从源电池中学到的知识,该方法具有大量数据。但是,尽管这些是成功的TL的关键组成部分,但很少讨论源电池模型是否合理以及可以传输的信息的哪一部分的确定。为了应对这些挑战,本文通过利用时间动态来协助转移学习,提出了一种可解释的基于TL的SOH估计方法,该方法由三个部分组成。首先,在动态时间扭曲的帮助下,放电时间序列的时间数据被同步,从而产生了循环同步时间序列的翘曲路径,这些时间序列负责使周期上的容量降解。其次,从周期同步时间序列的空间路径中检索的规范变体用于在源电池和目标电池之间进行分布相似性分析。第三,当分布相似性在预定义的阈值范围内时,通过从源SOH估计模型转移常见的时间动力学来构建一个综合目标SOH估计模型,并用目标电池的残留模型补偿错误。通过广泛使用的开源基准数据集,通过根平方误差评估的提议方法的估计误差高达0.0034,与现有方法相比,准确性提高了77%。
translated by 谷歌翻译
随着在充满挑战的环境中越来越需要多机器人探索未知区域的需求,需要有效的协作探索策略来实现此类壮举。可以部署基于边界的快速探索随机树(RRT)探索来探索未知的环境。然而,它的贪婪行为导致多个机器人探索收入最高的地区,从而导致勘探过程中大规模重叠。为了解决这个问题,我们提出了基于时间内存的RRT(TM-RRT)探索策略,用于多机器人在未知环境中执行强大的探索。它根据每个机器人的相对位置计算分配的每个边界的自适应持续时间,并计算边界的收入。此外,每个机器人都配备了由分配的边界和舰队共享的内存,以防止重复对同一边界的分配。通过模拟和实际部署,我们通过在25.0m x 540m(1350.0m2)区域完成勘探,展示了TM-RRT勘探策略的鲁棒性,而常规的RRT勘探策略则不足。
translated by 谷歌翻译
特定的发射极识别(SEI)是物理层身份验证的高潜在技术,它是上层身份验证的最关键补充之一。 SEI基于电路差而不是密码学的射频(RF)特征。这些功能是硬件电路的固有特征,很难伪造。最近,已经提出了各种基于深度学习(DL)的常规SEI方法,并实现了高级性能。但是,提出了这些方法,用于使用大量的RF信号样品进行训练的近距离场景,并且在训练样品有限的情况下,它们的性能较差。因此,我们将重点放在几个射击SEI(FS-SEI)上,用于通过自动依赖的监视播(ADS-B)信号进行飞机识别,并根据深度度量集合学习(DMEL)提出了一种新颖的FS-SEI方法。具体而言,提出的方法包括特征嵌入和分类。前者基于具有复杂价值的卷积神经网络(CVCNN)的度量学习,用于提取具有紧凑的类别内距离和可分离类别间距离的区分特征,而后者则由集合分类器实现。仿真结果表明,如果每个类别的样本数量超过5,则我们提出的方法的平均准确性高于98 \%。此外,特征可视化证明了我们提出的方法在可区分性和概括方面的优势。本文的代码可以从GitHub(https://github.com/beechburgpiestar/few-shot-specific-emitter-emitter-istifification-via-deep-metric-metric-semble-learning)下载。
translated by 谷歌翻译
为了在多个机器人系统中有效完成任务,必须解决的问题是同时定位和映射(SLAM)。激光雷达(光检测和范围)由于其出色的精度而用于许多SLAM解决方案,但其性能在无特征环境(如隧道或长走廊)中降低。集中式大满贯解决了云服务器的问题,云服务器需要大量的计算资源,并且缺乏针对中央节点故障的鲁棒性。为了解决这些问题,我们提出了一个分布式的SLAM解决方案,以使用超宽带(UWB)范围和探测测量值估算一组机器人的轨迹。所提出的方法在机器人团队之间分配了处理,并显着减轻了从集中式大满贯出现的计算问题。我们的解决方案通过最大程度地减少在机器人处于近距离接近时在不同位置进行的UWB范围测量方法来确定两个机器人之间的相对姿势(也称为环闭合)。 UWB在视线条件下提供了良好的距离度量,但是由于机器人的噪声和不可预测的路径,检索精确的姿势估计仍然是一个挑战。为了处理可疑的循环封闭,我们使用成对的一致性最大化(PCM)来检查循环封闭质量并执行异常拒绝。然后,在分布式姿势图优化(DPGO)模块中将过滤的环闭合与探光仪融合,以恢复机器人团队的完整轨迹。进行了广泛的实验以验证所提出的方法的有效性。
translated by 谷歌翻译
本文提出了一种有效且新颖的多重深度强化学习(MADRL)的方法,用于解决联合虚拟网络功能(VNF)的位置和路由(P&R),其中同时提供了具有差异性要求的多个服务请求。服务请求的差异要求反映出其延迟和成本敏感的因素。我们首先构建了VNF P&R问题,以共同减少NP完整的服务延迟和资源消耗成本的加权总和。然后,将关节VNF P&R问题分解为两个迭代子任务:放置子任务和路由子任务。每个子任务由多个并发并行顺序决策过程组成。通过调用深层确定性策略梯度方法和多代理技术,MADRL-P&R框架旨在执行两个子任务。提出了新的联合奖励和内部奖励机制,以匹配安置和路由子任务的目标和约束。我们还提出了基于参数迁移的模型重新训练方法来处理不断变化的网络拓扑。通过实验证实,提议的MADRL-P&R框架在服务成本和延迟方面优于其替代方案,并为个性化服务需求提供了更高的灵活性。基于参数迁移的模型重新训练方法可以在中等网络拓扑变化下有效加速收敛。
translated by 谷歌翻译