基于池的主动学习(AL)通过依次从大型未标记数据池中选择信息的未标记样本并从Oracle/Ontoter中查询标签,从而取得了巨大成功。但是,现有的AL采样策略可能在分布外(OOD)数据方案中无法很好地工作,其中未标记的数据池包含一些不属于目标任务类别的数据示例。在OOD数据情景下实现良好的AL性能是一项具有挑战性的任务,因为Al采样策略与OOD样本检测之间的自然冲突。 Al选择很难由当前基本分类器进行分类的数据(例如,预测类概率具有较高熵的样品),而OOD样品往往具有比分布更均匀的预测类概率(即高熵)(即高熵)(ID ) 数据。在本文中,我们提出了一种采样方案,即用于主动学习的蒙特 - 卡洛帕累托优化(POAL),该方案从未标记的数据库中选择了具有固定批次大小的未标记样品的最佳子集。我们将AL采样任务施加为多目标优化问题,因此我们基于两个冲突的目标利用Pareto优化:(1)正常的AL数据采样方案(例如,最大熵)和(2)作为OOD样本。实验结果表明其对经典机器学习(ML)和深度学习(DL)任务的有效性。
translated by 谷歌翻译
虽然深度学习(DL)是渴望数据的,并且通常依靠广泛的标记数据来提供良好的性能,但主动学习(AL)通过从未标记的数据中选择一小部分样本进行标签和培训来降低标签成本。因此,近年来,在有限的标签成本/预算下,深入的积极学习(DAL)是可行的解决方案,可在有限的标签成本/预算下最大化模型性能。尽管已经开发了大量的DAL方法并进行了各种文献综述,但在公平比较设置下对DAL方法的性能评估尚未可用。我们的工作打算填补这一空白。在这项工作中,我们通过重新实现19种引用的DAL方法来构建DAL Toolkit,即Deepal+。我们调查和分类与DAL相关的作品,并构建经常使用的数据集和DAL算法的比较实验。此外,我们探讨了影响DAL功效的一些因素(例如,批处理大小,训练过程中的时期数),这些因素为研究人员设计其DAL实验或执行DAL相关应用程序提供了更好的参考。
translated by 谷歌翻译
作为主导范式,微调目标数据的预先训练模型广泛用于许多深度学习应用,特别是对于小数据集。然而,最近的研究已经明确表明,一旦培训迭代的数量增加,划痕训练都没有比这一训练前策略更糟糕的最终表现。在这项工作中,我们从学习理论中流行的泛化分析的角度重新审视这种现象。我们的结果表明,最终预测精度可能具有对预训练模型的弱依赖性,特别是在大训练迭代的情况下。观察激励我们利用预训练预调整的数据,因为此数据也可用于微调。使用预训练数据的泛化结果表明,当适当的预训练数据包含在微调中时,可以提高目标任务的最终性能。随着理论发现的洞察力,我们提出了一种新颖的选择策略来选择从预训练数据中的子集,以帮助改善目标任务的概括。 8个基准数据集上的图像分类任务的广泛实验结果验证了基于数据选择的微调管道的有效性。
translated by 谷歌翻译
描述使用自然语言的图像被广泛称为图像标题,这是由于计算机视觉和自然语言生成技术的发展而达成了一致的进展。虽然传统的标题模型基于流行度量的高精度,即BLEU,苹果酒和香料,探索了标题与其他类似图像中的标题的能力。为了产生独特的标题,一些先驱采用对比学习或重新加权地面真理标题,其侧重于一个输入图像。然而,忽略了类似图像组中对象之间的关系(例如,相同专辑中的项目或属性或细粒度事件中的物品)。在本文中,我们使用基于组的独特标题模型(Gdiscap)来提高图像标题的独特性,其将每个图像与一个类似的组中的其他图像进行比较,并突出显示每个图像的唯一性。特别是,我们提出了一种基于组的内存注意力(GMA)模块,其存储在图像组中是唯一的对象特征(即,与其他图像中的对象的低相似性)。生成字幕时突出显示这些唯一的对象功能,从而产生更有独特的标题。此外,选择地面标题中的独特单词来监督语言解码器和GMA。最后,我们提出了一种新的评估度量,独特的单词率(Diswordrate)来测量标题的独特性。定量结果表明,该方法显着提高了几种基线模型的独特性,并实现了精度和独特性的最先进的性能。用户学习的结果与定量评估一致,并证明了新的公制Diswordrate的合理性。
translated by 谷歌翻译
重量衰减通常用于确保具有批归归量的深神经网络的训练实践中的良好概括(BN-DNNS),在该训练中,由于归一化,某些卷积层对于重量重新恢复是不变的。在本文中,我们证明了重量衰减的实际用法仍然存在一些未解决的问题,尽管现有的理论工作在解释BN-DNNS中体重衰减的影响方面。一方面,当非自适应学习率例如使用动量的SGD,即使在初始训练阶段,有效学习率也会继续增加,从而导致许多神经体系结构的过度拟合效果。另一方面,在SGDM和自适应学习率优化器中,例如亚当,体重衰减对概括的影响对超参数非常敏感。因此,找到最佳的重量衰减参数需要广泛的参数搜索。为了解决这些弱点,我们建议使用简单而有效的重量重新缩放(WRS)方案来规范重量规范,以替代体重衰减。 WRS通过将重量标准明确地重新定为单位规范来控制重量规范,从而防止梯度增加,但也确保了足够大的有效学习率以提高概括。在各种计算机视觉应用程序中,包括图像分类,对象检测,语义细分和人群计数,我们与重量衰减,隐含重量重新缩放(重量标准化)和梯度投影(ADAMP)相比,显示了WR的有效性和鲁棒性。
translated by 谷歌翻译
嵌套辍学是辍学操作的变体,能够根据训练期间的预定义重要性订购网络参数或功能。它已被探索:I。构造嵌套网络:嵌套网是神经网络,可以在测试时间(例如基于计算约束)中立即调整架构的架构。嵌套的辍学者隐含地对网络参数进行排名,生成一组子网络,从而使任何较小的子网络构成较大的子网络的基础。 ii。学习排序表示:应用于生成模型的潜在表示(例如自动编码器)对特征进行排名,从而在尺寸上执行密集表示的明确顺序。但是,在整个训练过程中,辍学率是固定为高参数的。对于嵌套网,当删除网络参数时,性能衰减在人类指定的轨迹中而不是从数据中学到的轨迹中。对于生成模型,特征的重要性被指定为恒定向量,从而限制了表示学习的灵活性。为了解决该问题,我们专注于嵌套辍学的概率对应物。我们提出了一个嵌套掉落(VND)操作,该操作以低成本绘制多维有序掩码的样品,为嵌套掉落的参数提供了有用的梯度。基于这种方法,我们设计了一个贝叶斯嵌套的神经网络,以了解参数分布的顺序知识。我们在不同的生成模型下进一步利用VND来学习有序的潜在分布。在实验中,我们表明所提出的方法在分类任务中的准确性,校准和室外检测方面优于嵌套网络。它还在数据生成任务上胜过相关的生成模型。
translated by 谷歌翻译
使用重量衰减来惩罚神经网络中的重量规范,这是一种标准的培训实践,可以使网络的复杂性正常。在本文中,我们表明,包括重量衰减在内的一个正规化家族无效地惩罚具有正均匀激活功能的网络的固有权重规范,例如线性,relu和max-pool-pool函数。由于同质性,网络指定的功能是在层之间的重量尺度转移的不变性。无效的正规化器对这种转移敏感,因此使模型容量不正常,导致过度拟合。为了解决这一缺点,我们提出了一个改进的正规器,该正常化程序是体重尺度转移不变的,因此有效地约束了神经网络的内在规范。派生的正常化程序是网络输入梯度的上限,因此最大程度地降低了改进的正规器也使对抗性鲁棒性受益。还考虑了剩余连接,我们表明我们的正规器还形成了这种残留网络的输入梯度的上限。我们证明了我们提出的正常化程序在各种数据集和神经网络体系结构上的功效,以改善概括和对抗性鲁棒性。
translated by 谷歌翻译
Nowadays, time-stamped web documents related to a general news query floods spread throughout the Internet, and timeline summarization targets concisely summarizing the evolution trajectory of events along the timeline. Unlike traditional document summarization, timeline summarization needs to model the time series information of the input events and summarize important events in chronological order. To tackle this challenge, in this paper, we propose a Unified Timeline Summarizer (UTS) that can generate abstractive and extractive timeline summaries in time order. Concretely, in the encoder part, we propose a graph-based event encoder that relates multiple events according to their content dependency and learns a global representation of each event. In the decoder part, to ensure the chronological order of the abstractive summary, we propose to extract the feature of event-level attention in its generation process with sequential information remained and use it to simulate the evolutionary attention of the ground truth summary. The event-level attention can also be used to assist in extracting summary, where the extracted summary also comes in time sequence. We augment the previous Chinese large-scale timeline summarization dataset and collect a new English timeline dataset. Extensive experiments conducted on these datasets and on the out-of-domain Timeline 17 dataset show that UTS achieves state-of-the-art performance in terms of both automatic and human evaluations.
translated by 谷歌翻译
Brain midline shift (MLS) is one of the most critical factors to be considered for clinical diagnosis and treatment decision-making for intracranial hemorrhage. Existing computational methods on MLS quantification not only require intensive labeling in millimeter-level measurement but also suffer from poor performance due to their dependence on specific landmarks or simplified anatomical assumptions. In this paper, we propose a novel semi-supervised framework to accurately measure the scale of MLS from head CT scans. We formulate the MLS measurement task as a deformation estimation problem and solve it using a few MLS slices with sparse labels. Meanwhile, with the help of diffusion models, we are able to use a great number of unlabeled MLS data and 2793 non-MLS cases for representation learning and regularization. The extracted representation reflects how the image is different from a non-MLS image and regularization serves an important role in the sparse-to-dense refinement of the deformation field. Our experiment on a real clinical brain hemorrhage dataset has achieved state-of-the-art performance and can generate interpretable deformation fields.
translated by 谷歌翻译
Adversarial imitation learning (AIL) has become a popular alternative to supervised imitation learning that reduces the distribution shift suffered by the latter. However, AIL requires effective exploration during an online reinforcement learning phase. In this work, we show that the standard, naive approach to exploration can manifest as a suboptimal local maximum if a policy learned with AIL sufficiently matches the expert distribution without fully learning the desired task. This can be particularly catastrophic for manipulation tasks, where the difference between an expert and a non-expert state-action pair is often subtle. We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of multiple exploratory, auxiliary tasks in addition to a main task. The addition of these auxiliary tasks forces the agent to explore states and actions that standard AIL may learn to ignore. Additionally, this particular formulation allows for the reusability of expert data between main tasks. Our experimental results in a challenging multitask robotic manipulation domain indicate that LfGP significantly outperforms both AIL and behaviour cloning, while also being more expert sample efficient than these baselines. To explain this performance gap, we provide further analysis of a toy problem that highlights the coupling between a local maximum and poor exploration, and also visualize the differences between the learned models from AIL and LfGP.
translated by 谷歌翻译