在城市环境中面对道路选项问题时,现有的仿制学习方法遭受了低效率和泛化能力。在本文中,我们提出了一种横摆引导的仿制学习方法,以提高端到端自主驾驶范式的道路选择性能,就利用培训样本和对不断变化的环境的适应性而言。具体地,偏航信息由导航图的轨迹提供。我们的端到端架构,偏航引导模仿学习与Resnet34注意(YILRATT),集成了Resnet34主干和注意机制,以获得准确的感知。它不需要高精度地图,并且在给定由消费级GPS接收器提供的偏航信息的情况下实现完全端到端的自主驱动。通过分析注意热图,我们可以揭示决策和场景感知之间的一些因果关系,特别是故障情况是由错误的感知引起的。我们在Carla 0.9.11模拟器中收集专家体验,并改善基准科尔2017和NOCRASH。实验结果表明,伊利拉特比SOTA CILRS的成功率较高26.27%。代码,数据集,基准和实验结果可以在https://github.com/yandong024/yaw-guiding -il.git找到
translated by 谷歌翻译
We introduce CARLA, an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. We use CARLA to study the performance of three approaches to autonomous driving: a classic modular pipeline, an endto-end model trained via imitation learning, and an end-to-end model trained via reinforcement learning. The approaches are evaluated in controlled scenarios of increasing difficulty, and their performance is examined via metrics provided by CARLA, illustrating the platform's utility for autonomous driving research.
translated by 谷歌翻译
Aerial view of test environment (b) Vision-based driving, view from onboard camera (c) Side view of vehicle Fig. 1. Conditional imitation learning allows an autonomous vehicle trained end-to-end to be directed by high-level commands. (a) We train and evaluate robotic vehicles in the physical world (top) and in simulated urban environments (bottom). (b) The vehicles drive based on video from a forward-facing onboard camera. At the time these images were taken, the vehicle was given the command "turn right at the next intersection". (c) The trained controller handles sensorimotor coordination (staying on the road, avoiding collisions) and follows the provided commands.
translated by 谷歌翻译
Multi-modal fusion is a basic task of autonomous driving system perception, which has attracted many scholars' interest in recent years. The current multi-modal fusion methods mainly focus on camera data and LiDAR data, but pay little attention to the kinematic information provided by the bottom sensors of the vehicle, such as acceleration, vehicle speed, angle of rotation. These information are not affected by complex external scenes, so it is more robust and reliable. In this paper, we introduce the existing application fields of vehicle bottom information and the research progress of related methods, as well as the multi-modal fusion methods based on bottom information. We also introduced the relevant information of the vehicle bottom information data set in detail to facilitate the research as soon as possible. In addition, new future ideas of multi-modal fusion technology for autonomous driving tasks are proposed to promote the further utilization of vehicle bottom information.
translated by 谷歌翻译
当前的端到端自动驾驶方法要么基于计划的轨迹运行控制器,要么直接执行控制预测,这已经跨越了两条单独研究的研究线。本文看到了它们彼此的潜在相互利益,主动探讨了这两个发展良好的世界的结合。具体而言,我们的集成方法分别有两个用于轨迹计划和直接控制的分支。轨迹分支可以预测未来的轨迹,而控制分支则涉及一种新颖的多步预测方案,以便可以将当前动作与未来状态之间的关系进行推理。连接了两个分支,因此控制分支在每个时间步骤中从轨迹分支接收相应的指导。然后将来自两个分支的输出融合以实现互补的优势。我们的结果在闭环城市驾驶环境中进行了评估,并使用CARLA模拟器具有挑战性的情况。即使有了单眼相机的输入,建议的方法在官方Carla排行榜上排名第一$,超过了其他具有多个传感器或融合机制的复杂候选人。源代码和数据将在https://github.com/openperceptionx/tcp上公开提供。
translated by 谷歌翻译
在多机构动态交通情况下的自主驾驶具有挑战性:道路使用者的行为不确定,很难明确建模,并且自我车辆应与他们应用复杂的谈判技巧,例如屈服,合并和交付,以实现,以实现在各种环境中都有安全有效的驾驶。在这些复杂的动态场景中,传统的计划方法主要基于规则,并且通常会导致反应性甚至过于保守的行为。因此,他们需要乏味的人类努力来维持可行性。最近,基于深度学习的方法显示出令人鼓舞的结果,具有更好的概括能力,但手工工程的工作较少。但是,它们要么是通过有监督的模仿学习(IL)来实施的,该学习遭受了数据集偏见和分配不匹配问题,要么接受了深入强化学习(DRL)的培训,但专注于一种特定的交通情况。在这项工作中,我们建议DQ-GAT实现可扩展和主动的自主驾驶,在这些驾驶中,基于图形注意力的网络用于隐式建模相互作用,并采用了深层Q学习来以无聊的方式训练网络端到端的网络。 。在高保真驾驶模拟器中进行的广泛实验表明,我们的方法比以前的基于学习的方法和传统的基于规则的方法获得了更高的成功率,并且在可见和看不见的情况下都可以更好地摆脱安全性和效率。此外,轨迹数据集的定性结果表明,我们所学的政策可以通过实时速度转移到现实世界中。演示视频可在https://caipeide.github.io/dq-gat/上找到。
translated by 谷歌翻译
为了关注自动驾驶工具的点对点导航的任务,我们提出了一种新颖的深度学习模型,该模型接受了端到端和多任务学习的方式,以同时执行感知和控制任务。该模型用于通过按照全球规划器定义的一系列路线来安全地驱动自我车辆。模型的感知部分用于编码RGBD摄像机提供的高维观察数据,同时执行语义分割,语义深度云(SDC)映射以及交通灯状态和停止符号预测。然后,控制零件将解码编码的功能以及GPS和速度计提供的其他信息,以预测带有潜在特征空间的路点。此外,还采用了两名代理来处理这些输出,并制定控制策略,以确定转向,油门和制动的水平为最终动作。在Carla模拟器上评估该模型,其各种情况由正常的对抗情况和不同的风雨制成,以模仿现实世界中的情况。此外,我们对一些最近的模型进行了比较研究,以证明驾驶多个方面的性能是合理的。此外,我们还对SDC映射和多代理进行了消融研究,以了解其角色和行为。结果,即使参数和计算负载较少,我们的模型也达到了最高的驾驶得分。为了支持未来的研究,我们可以在https://github.com/oskarnatan/end-to-end-drive上分享我们的代码。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
现代车辆配备各种驾驶员辅助系统,包括自动车道保持,这防止了无意的车道偏离。传统车道检测方法采用了手工制作或基于深度的学习功能,然后使用基于帧的RGB摄像机进行通道提取的后处理技术。用于车道检测任务的帧的RGB摄像机的利用易于照明变化,太阳眩光和运动模糊,这限制了车道检测方法的性能。在自主驾驶中的感知堆栈中结合了一个事件摄像机,用于自动驾驶的感知堆栈是用于减轻基于帧的RGB摄像机遇到的挑战的最有希望的解决方案之一。这项工作的主要贡献是设计车道标记检测模型,它采用动态视觉传感器。本文探讨了使用事件摄像机通过设计卷积编码器后跟注意引导的解码器的新颖性应用了车道标记检测。编码特征的空间分辨率由致密的区域空间金字塔池(ASPP)块保持。解码器中的添加剂注意机制可提高促进车道本地化的高维输入编码特征的性能,并缓解后处理计算。使用DVS数据集进行通道提取(DET)的DVS数据集进行评估所提出的工作的功效。实验结果表明,多人和二进制车道标记检测任务中的5.54 \%$ 5.54 \%$ 5.54 \%$ 5.03 \%$ 5.03 \%$ 5.03。此外,在建议方法的联盟($ iou $)分数上的交叉点将超越最佳最先进的方法,分别以6.50 \%$ 6.50 \%$ 6.5.37 \%$ 9.37 \%$ 。
translated by 谷歌翻译
模仿学习是一种广泛使用的政策学习方法,它使智能代理能够从专家演示中获取复杂的技能。模仿学习算法的输入通常由当前的观察和历史观察组成,因为最近的观察结果可能不含足够的信息。图像观察尤其是这种情况,其中单个图像仅包含场景的一个视图,并且缺乏运动信息和对象阻塞。从理论上讲,为模仿学习代理提供多个观察将带来更好的性能。然而,令人惊讶的是,人们发现有时从观察史中模仿的表现比最近的观察结果差。在本文中,我们从神经网络角度的信息流中解释了这种现象。我们还提出了一种新颖的模仿学习神经网络体系结构,该架构不会因设计而遭受这个问题的困扰。此外,我们的方法缩放到高维图像观测值。最后,我们对两个广泛使用的模拟器Carla和Mujoco进行了基准测试,它成功地减轻了模仿问题并超过了现有的解决方案。
translated by 谷歌翻译
由于安全问题,自动驾驶汽车的大规模部署已不断延迟。一方面,全面的场景理解是必不可少的,缺乏这种理解会导致易受罕见但复杂的交通状况,例如突然出现未知物体。但是,从全球环境中的推理需要访问多种类型的传感器以及多模式传感器信号的足够融合,这很难实现。另一方面,学习模型中缺乏可解释性也会因无法验证的故障原因阻碍安全性。在本文中,我们提出了一个安全增强的自主驾驶框架,称为可解释的传感器融合变压器(Interfuser),以完全处理和融合来自多模式多视图传感器的信息,以实现全面的场景理解和对抗性事件检测。此外,我们的框架是从我们的框架中生成的中间解释功能,该功能提供了更多的语义,并被利用以更好地约束操作以在安全集内。我们在Carla基准测试中进行了广泛的实验,我们的模型优于先前的方法,在公共卡拉排行榜上排名第一。
translated by 谷歌翻译
安全驾驶需要人类和智能代理的多种功能,例如无法看到环境的普遍性,对周围交通的安全意识以及复杂的多代理设置中的决策。尽管强化学习取得了巨大的成功(RL),但由于缺乏集成的环境,大多数RL研究工作分别研究了每个能力。在这项工作中,我们开发了一个名为MetAdrive的新驾驶模拟平台,以支持对机器自治的可概括增强学习算法的研究。 Metadrive具有高度的组成性,可以从程序生成和实际数据导入的实际数据中产生无限数量的不同驾驶场景。基于Metadrive,我们在单一代理和多代理设置中构建了各种RL任务和基线,包括在看不见的场景,安全探索和学习多机构流量的情况下进行基准标记。对程序生成的场景和现实世界情景进行的概括实验表明,增加训练集的多样性和大小会导致RL代理的推广性提高。我们进一步评估了元数据环境中各种安全的增强学习和多代理增强学习算法,并提供基准。源代码,文档和演示视频可在\ url {https://metadriverse.github.io/metadrive}上获得。
translated by 谷歌翻译
现有的智能驾驶技术通常在平衡平稳驾驶和快速避免障碍物时存在问题,尤其是当车辆处于非结构环境中,并且在紧急情况下容易发生不稳定。因此,这项研究提出了一种自主障碍控制策略,该策略可以根据注意力驾驶的想法有效地基于注意力长期记忆(注意LSTM)深度学习模型来确保车辆稳定性。首先,我们设计了自动障碍避免控制规则,以确保无人车辆的安全。其次,我们改善了自动障碍避免控制策略,并结合了特殊车辆的稳定性分析。第三,我们通过实验构建了深度学习障碍物控制,该系统的平均相对误差为15%。最后,该控制策略的稳定性和准确性得到了数值和实验验证。这项研究中提出的方法可以确保无人车辆可以在平稳行驶时成功避免障碍。
translated by 谷歌翻译
在本文中,我们提出了一个系统,以培训不仅从自我车辆收集的经验,而且还观察到的所有车辆的经验。该系统使用其他代理的行为来创建更多样化的驾驶场景,而无需收集其他数据。从其他车辆学习的主要困难是没有传感器信息。我们使用一组监督任务来学习一个中间表示,这是对控制车辆的观点不变的。这不仅在训练时间提供了更丰富的信号,而且还可以在推断过程中进行更复杂的推理。了解所有车辆驾驶如何有助于预测测试时的行为,并避免碰撞。我们在闭环驾驶模拟中评估该系统。我们的系统的表现优于公共卡拉排行榜上的所有先前方法,较大的利润率将驾驶得分提高了25,路线完成率提高了24分。我们的方法赢得了2021年的卡拉自动驾驶挑战。代码和数据可在https://github.com/dotchen/lav上获得。
translated by 谷歌翻译
仿真有可能改变在安全关键方案中部署的移动代理的强大算法的开发。然而,对现有模拟发动机的差的光敏性和缺乏不同的传感器方式保持关键障碍朝来实现这种潜力。在这里,我们呈现Vista,一个开源,数据驱动模拟器,用于为自动车辆集成多种类型的传感器。使用高保真度,实际数据集,Vista表示和模拟RGB摄像机,3D LIDAR和基于事件的相机,可以快速生成模拟中的新颖观点,从而富集可用于与难以实现的拐角案例的政策学习的数据在物理世界中捕获。使用Vista,我们展示了在每个传感器类型上培训和测试对控制策略的能力,并通过在全尺度自主车辆上进行展示这种方法的功率。在Vista中学到的政策展示了SIM-TEAR-REAL转移,而不是改进和更高的鲁棒性,而不是完全在现实世界数据上培训的鲁棒性。
translated by 谷歌翻译
深度强化学习在基于激光的碰撞避免有效的情况下取得了巨大的成功,因为激光器可以感觉到准确的深度信息而无需太多冗余数据,这可以在算法从模拟环境迁移到现实世界时保持算法的稳健性。但是,高成本激光设备不仅很难为大型机器人部署,而且还表现出对复杂障碍的鲁棒性,包括不规则的障碍,例如桌子,桌子,椅子和架子,以及复杂的地面和特殊材料。在本文中,我们提出了一个新型的基于单眼相机的复杂障碍避免框架。特别是,我们创新地将捕获的RGB图像转换为伪激光测量,以进行有效的深度强化学习。与在一定高度捕获的传统激光测量相比,仅包含距离附近障碍的一维距离信息,我们提议的伪激光测量融合了捕获的RGB图像的深度和语义信息,这使我们的方法有效地有效障碍。我们还设计了一个功能提取引导模块,以加重输入伪激光测量,并且代理对当前状态具有更合理的关注,这有利于提高障碍避免政策的准确性和效率。
translated by 谷歌翻译
The feasibility of collecting a large amount of expert demonstrations has inspired growing research interests in learning-to-drive settings, where models learn by imitating the driving behaviour from experts. However, exclusively relying on imitation can limit agents' generalisability to novel scenarios that are outside the support of the training data. In this paper, we address this challenge by factorising the driving task, based on the intuition that modular architectures are more generalisable and more robust to changes in the environment compared to monolithic, end-to-end frameworks. Specifically, we draw inspiration from the trajectory forecasting community and reformulate the learning-to-drive task as obstacle-aware perception and grounding, distribution-aware goal prediction, and model-based planning. Firstly, we train the obstacle-aware perception module to extract salient representation of the visual context. Then, we learn a multi-modal goal distribution by performing conditional density-estimation using normalising flow. Finally, we ground candidate trajectory predictions road geometry, and plan the actions based on on vehicle dynamics. Under the CARLA simulator, we report state-of-the-art results on the CARNOVEL benchmark.
translated by 谷歌翻译
两栖地面汽车将飞行和驾驶模式融合在一起,以实现更灵活的空中行动能力,并且最近受到了越来越多的关注。通过分析现有的两栖车辆,我们强调了在复杂的三维城市运输系统中有效使用两栖车辆的自动驾驶功能。我们审查并总结了现有两栖车辆设计中智能飞行驾驶的关键促成技术,确定主要的技术障碍,并提出潜在的解决方案,以实现未来的研究和创新。本文旨在作为研究和开发智能两栖车辆的指南,以实现未来的城市运输。
translated by 谷歌翻译
随着自动驾驶的发展,单个车辆的自动驾驶技术的提高已达到瓶颈。车辆合作自动驾驶技术的进步可以扩大车辆的感知范围,补充感知盲区并提高感知的准确性,以促进自主驾驶技术的发展并实现车辆路整合。该项目主要使用LIDAR来开发数据融合方案,以实现车辆和道路设备数据的共享和组合,并实现动态目标的检测和跟踪。同时,设计和用于测试我们的车辆道路合作意识系统的一些测试方案,这证明了车辆道路合作自动驾驶在单车自动驾驶上的优势。
translated by 谷歌翻译