噪声的去除或取消对成像和声学具有广泛的应用。在日常生活中,Denoising甚至可能包括对地面真理不忠的生成方面。但是,对于科学应用,denoing必须准确地重现地面真相。在这里,我们展示了如何通过深层卷积神经网络来定位数据,从而以定量精度出现弱信号。特别是,我们研究了晶体材料的X射线衍射。我们证明,弱信号是由电荷排序引起的,在嘈杂的数据中微不足道的信号,在DeNo的数据中变得可见和准确。通过对深度神经网络的监督培训,具有成对的低噪声数据,可以通过监督培训来实现这一成功。这样,神经网络就可以了解噪声的统计特性。我们证明,使用人造噪声(例如泊松和高斯)不会产生这种定量准确的结果。因此,我们的方法说明了一种实用的噪声过滤策略,可以应用于具有挑战性的获取问题。
translated by 谷歌翻译
图像质量是一个模糊的概念,对不同的人不同的含义。为了量化图像质量,通常在损坏的图像和地面真实图像之间计算相对差异。但是我们应该使用哪些指标来测量这种差异?理想情况下,公制应对自然和科学图像表现良好。结构相似度指数(SSIM)是人类如何感知图像相似性的好措施,但对显微镜中科学有意义的差异不敏感。在电子和超分辨率显微镜中,经常使用傅里叶环相关(FRC),但在这些领域之外几乎是知名的。在这里,我们表明FRC同样可以应用于自然图像,例如自然图像。 Google打开图像数据集。然后,我们基于FRC定义了损失功能,表明它是在分析上可分的,并使用它来训练U-Net以用于去噪图像。这种基于FRC的损耗功能允许网络训练更快并达到与使用基于L1或L2的损失相似或更好的结果。我们还研究了通过FRC分析的神经网络去噪的性质和局限性。
translated by 谷歌翻译
作为混合成像技术,光声显微镜(PAM)成像由于激光强度的最大允许暴露,组织中超声波的衰减以及换能器的固有噪声而受到噪声。去噪是降低噪声的后处理方法,并且可以恢复PAM图像质量。然而,之前的去噪技术通常严重依赖于数学前导者以及手动选择的参数,导致对不同噪声图像的不令人满意和慢的去噪能,这极大地阻碍了实用和临床应用。在这项工作中,我们提出了一种基于深度学习的方法,可以从PAM图像中除去复杂的噪声,没有数学前导者,并手动选择不同输入图像的设置。注意增强的生成对抗性网络用于提取图像特征并去除各种噪声。在合成和实际数据集上证明了所提出的方法,包括幻影(叶静脉)和体内(小鼠耳血管和斑马鱼颜料)实验。结果表明,与先前的PAM去噪方法相比,我们的方法在定性和定量上恢复图像时表现出良好的性能。此外,为256次\ times256 $像素的图像实现了0.016 s的去噪速度。我们的方法对于PAM图像的去噪有效和实用。
translated by 谷歌翻译
解决纳米级的形态学化相变对各种学科的许多科学和工业应用至关重要。通过组合全场传输X射线显微镜(TXM)和X射线吸收附近边缘结构(XANES)的TXM-XANES成像技术是通过获取具有多能量X的一系列显微镜图像来操作的新兴工具 - 接合并配合以获得化学图。然而,由于系统误差和用于快速采集的低曝光照明,其能力受到差的信噪比差的限制。在这项工作中,通过利用TXM-XANES成像数据的内在属性和子空间建模,我们引入了一种简单且坚固的去噪方法来提高图像质量,这使得能够快速和高灵敏度的化学成像。对合成和实时数据集的广泛实验证明了该方法的优越性。
translated by 谷歌翻译
Tweedie分布是指数色散模型的特殊情况,它通常用于古典统计作为广义线性模型的分布。在这里,我们揭示了Tweedie发行版也在现代深度学习时代发挥关键作用,导致分布独立的自我监督图像去噪公式,没有清洁参考图像。具体地,通过与最近的噪声2Score自我监督的图像去噪方法和旋转点分布的鞍点近似来组合,我们可以提供一种可以用于大类噪声分布的一般封闭式去噪公式,而不知道底层噪声分布。与原始噪声2Score类似,新方法由两个连续的步骤组成:使用扰动噪声图像的分数匹配,然后是通过分布无关的Tweedie公式的闭合形式图像去噪公式。这还提出了一种系统算法来估计给定嘈杂的图像数据集的噪声模型和噪声参数。通过广泛的实验,我们证明了所提出的方法可以准确地估计噪声模型和参数,并在基准数据集和现实世界数据集中提供最先进的自我监督图像去噪表现。
translated by 谷歌翻译
在X射线游离电子激光器(XFELS)处的单粒子成像(SPI)特别适合于确定其本地环境中颗粒的3D结构。对于成功的重建,必须从大量获取的图案中分离出来的衍射模式。我们建议将此任务作为图像分类问题制定,并使用卷积神经网络(CNN)架构来解决它。开发了两个CNN配置:一个最大化F1分数的CNN配置和强调高召回的一个配置。我们还将CNN与期望最大化(EM)选择以及尺寸过滤结合起来。我们观察到,我们的CNN选择在我们之前的工作中使用的电子选择的功率谱密度函数的对比度较低。但是,基于CNN的选择的重建提供了类似的结果。将CNN引入SPI实验允许简化重建管道,使研究人员能够在飞行中对模式进行分类,并且因此,它们使他们能够严格控制其实验的持续时间。我们认为,在描述的SPI分析工作流程中提出基于非标准的人工智能(AI)解决方案可能对SPI实验的未来发展有益。
translated by 谷歌翻译
We propose a deep learning method for three-dimensional reconstruction in low-dose helical cone-beam computed tomography. We reconstruct the volume directly, i.e., not from 2D slices, guaranteeing consistency along all axes. In a crucial step beyond prior work, we train our model in a self-supervised manner in the projection domain using noisy 2D projection data, without relying on 3D reference data or the output of a reference reconstruction method. This means the fidelity of our results is not limited by the quality and availability of such data. We evaluate our method on real helical cone-beam projections and simulated phantoms. Our reconstructions are sharper and less noisy than those of previous methods, and several decibels better in quantitative PSNR measurements. When applied to full-dose data, our method produces high-quality results orders of magnitude faster than iterative techniques.
translated by 谷歌翻译
图像去噪是许多领域下游任务的先决条件。低剂量和光子计数计算断层扫描(CT)去噪可以在最小化辐射剂量下优化诊断性能。监督深层去噪方法是流行的,但需要成对的清洁或嘈杂的样本通常在实践中不可用。受独立噪声假设的限制,电流无监督的去噪方法不能处理与CT图像中的相关噪声。在这里,我们提出了一种基于类似的类似性的无人监督的无监督的深度去噪方法,称为Coxing2Sim,以非局部和非线性方式起作用,不仅抑制独立而且还具有相关的噪音。从理论上讲,噪声2SIM在温和条件下渐近相当于监督学习方法。通过实验,Nosie2SIM从嘈杂的低剂量CT和光子计数CT图像中的内在特征,从视觉上,定量和统计上有效地或甚至优于实际数据集的监督学习方法。 Coke2Sim是一般无监督的去噪方法,在不同的应用中具有很大的潜力。
translated by 谷歌翻译
为了了解材料特性的起源,三轴光谱仪(TAS)处的中子散射实验通过测量其动量(Q)和能量(E)空间中的强度分布来研究样品中的磁和晶格激发。但是,TAS实验的高需求和有限的光束时间可用性提出了自然的问题,即我们是否可以提高其效率或更好地利用实验者的时间。实际上,使用TAS,有许多科学问题需要在Q-E空间的特定区域中搜索感兴趣的信号,但是当手动完成时,这是耗时且效率低下的,因为测量点可能会放置在此类的无信息区域中作为背景。主动学习是一种有前途的通用机器学习方法,可以迭代地检测自主信号的信息区域,即不受人类干扰,从而避免了不必要的测量并加快实验。此外,自主模式允许实验者在此期间专注于其他相关任务。我们在本文中描述的方法利用了对数高斯过程,由于对数转换,该过程在信号区域中具有最大的近似不确定性。因此,将不确定性最大化为采集功能,因此直接产生了信息测量的位置。我们证明了我们方法对在Themal Tas Eiger(PSI)进行真实中子实验的结果的好处,以及在合成环境中基准的结果,包括许多不同的激发。
translated by 谷歌翻译
在超声成像中,组织的均匀区域的出现受到斑点的影响,对于某些应用,这可能会使组织不规则的检测变得困难。为了应对这一点,通常将减少斑点过滤器应用于图像是很普遍的做法。大多数传统的过滤技术都是精心制作的,通常需要对当前的硬件,成像方案和应用进行精心调整。另一方面,基于学习的技术遭受了对训练的目标图像的需求(如果有完全监督的技术),或者需要狭窄,基于复杂的物理模型的斑点外观模型,这些模型在所有情况下都不适用。通过这项工作,我们提出了一种基于深度学习的方法,用于去除斑点,而无需这些限制。为此,我们利用逼真的超声仿真技术,这些技术允许对代表完全相同组织的几种独立的斑点实现进行实例化,从而允许应用图像重建技术,这些技术与成对损坏的数据成对一起使用。与其他两种最先进的方法(非本地均值和优化的贝叶斯非本地均值过滤器)相比,我们的方法在定性比较和定量评估中表现出色,尽管仅对模拟进行了培训,并且是几个顺序,并且是几个顺序幅度更快。
translated by 谷歌翻译
$ \ Texit {Fermi} $数据中的银河系中多余(GCE)的两个领先假设是一个未解决的微弱毫秒脉冲条件(MSP)和暗物质(DM)湮灭。这些解释之间的二分法通常通过将它们建模为两个单独的发射组分来反映。然而,诸如MSP的点源(PSS)在超微弱的极限中具有统计变质的泊松发射(正式的位置,预期每个来源平均贡献远低于一个光子),导致可能提出问题的歧义如排放是否是PS样或性质中的泊松人。我们提出了一种概念上的新方法,以统一的方式描述PS和泊松发射,并且刚刚从此获得的结果中获得了对泊松组件的约束。为了实现这种方法,我们利用深度学习技术,围绕基于神经网络的方法,用于直方图回归,其表达量数量的不确定性。我们证明我们的方法对许多困扰先前接近的系统,特别是DM / PS误操作来稳健。在$ \ texit {fermi} $数据中,我们发现由$ \ sim4 \ times 10 ^ {-11} \ \ text {counts} \ {counts} \ text {counts} \ text {counts} \ \ text {cm} ^ { - 2} \ \ text {s} ^ { - 1} $(对应于$ \ sim3 - 4 $每pL期望计数),这需要$ n \ sim \ mathcal {o}( 10 ^ 4)$源来解释整个过剩(中位数价值$ n = \文本{29,300} $横跨天空)。虽然微弱,但这种SCD允许我们获得95%信心的Poissonian比赛的约束$ \ eta_p \ leq 66 \%$。这表明大量的GCE通量是由于PSS 。
translated by 谷歌翻译
波前调节器的限制空间散宽产品(SBP)阻碍了大型视野(FOV)上图像的高分辨率合成/投影。我们报告了一种深度学习的衍射显示设计,该设计基于一对训练的电子编码器和衍射光学解码器,用于合成/项目超级分辨图像,使用低分辨率波形调节器。由训练有素的卷积神经网络(CNN)组成的数字编码器迅速预处理了感兴趣的高分辨率图像,因此它们的空间信息被编码为低分辨率(LR)调制模式,该模式通过低SBP Wavefront调制器投影。衍射解码器使用薄的传播层处理该LR编码的信息,这些层是使用深度学习构成的,以在其输出FOV处进行全面合成和项目超级分辨图像。我们的结果表明,这种衍射图像显示可以达到〜4的超分辨率因子,表明SBP增加了约16倍。我们还使用3D打印的衍射解码器在THZ光谱上进行实验验证了这种衍射超分辨率显示器的成功。该衍射图像解码器可以缩放以在可见的波长下运行,并激发紧凑,低功率和计算效率的大型FOV和高分辨率显示器的设计。
translated by 谷歌翻译
荧光显微镜是促进生物医学研究发现的关键驱动力。但是,随着显微镜硬件的局限性和观察到的样品的特征,荧光显微镜图像易受噪声。最近,已经提出了一些自我监督的深度学习(DL)denoising方法。但是,现有方法的训练效率和降解性能在实际场景噪声中相对较低。为了解决这个问题,本文提出了自我监督的图像denoising方法噪声2SR(N2SR),以训练基于单个嘈杂观察的简单有效的图像Denoising模型。我们的noings2SR Denoising模型设计用于使用不同维度的配对嘈杂图像进行训练。从这种训练策略中受益,Noige2SR更有效地自我监督,能够从单个嘈杂的观察结果中恢复更多图像细节。模拟噪声和真实显微镜噪声的实验结果表明,噪声2SR优于两个基于盲点的自我监督深度学习图像Denoising方法。我们设想噪声2SR有可能提高更多其他类型的科学成像质量。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
电子能量损失光谱(EELS)光谱中编码的电离边缘实现了高级材料分析,包括组成分析和元素定量。平行鳗鱼仪器和快速,敏感探测器的开发极大地提高了鳗鱼光谱的采集速度。但是,传统的核心边缘识别方式是基于经验和人工依赖的,这限制了处理速度。到目前为止,RAW EELS光谱上核心损失边缘的低信号噪声比和低跳跃比对于边缘识别的自动化一直具有挑战性。在这项工作中,提出了卷积双向长期短期记忆神经网络(CNN-BILSTM),以使原始光谱的核心损失边缘的检测和元素鉴定自动化。通过使用我们的正向模型来协助神经网络的训练和验证,可以合成鳗鱼光谱数据库。为了使合成的光谱类似于真实光谱,我们收集了一个实验获得的鳗鱼核心边缘的大型库。在合成训练库中,边缘是通过将多高斯模型拟合到实验中的真实边缘来建模的,并模拟并添加了噪声和仪器不完美。训练有素的CNN-BILSTM网络针对从实验收集的模拟光谱和实际光谱进行了测试。该网络的高精度为94.9%,证明,如果没有对原始光谱进行复杂的预处理,则提出的CNN-BILSTM网络可以以高精度来实现鳗鱼光谱的核心损失边缘识别的自动化。
translated by 谷歌翻译
在许多重要的科学和工程应用中发现了卷数据。渲染此数据以高质量和交互速率为苛刻的应用程序(例如虚拟现实)的可视化化,即使使用专业级硬件也无法实现。我们介绍了Fovolnet - 一种可显着提高数量数据可视化的性能的方法。我们开发了一种具有成本效益的渲染管道,该管道稀疏地对焦点进行了量度,并使用深层神经网络重建了全帧。 FOVEATED渲染是一种优先考虑用户焦点渲染计算的技术。这种方法利用人类视觉系统的属性,从而在用户视野的外围呈现数据时节省了计算资源。我们的重建网络结合了直接和内核预测方法,以产生快速,稳定和感知令人信服的输出。凭借纤细的设计和量化的使用,我们的方法在端到端框架时间和视觉质量中都优于最先进的神经重建技术。我们对系统的渲染性能,推理速度和感知属性进行了广泛的评估,并提供了与竞争神经图像重建技术的比较。我们的测试结果表明,Fovolnet始终在保持感知质量的同时,在传统渲染上节省了大量时间。
translated by 谷歌翻译
强度衍射断层扫描(IDT)是指用于从一组仅2D强度测量的样品成像样品的3D折射率(RI)分布的一类光学显微镜技术。由于相位信息的丢失和缺失的锥体问题,无伪影RI地图的重建是IDT的一个基本挑战。神经领域(NF)最近成为一种新的深度学习方法(DL),用于学习物理领域的连续表示。 NF使用基于坐标的神经网络来表示该场,通过将空间坐标映射到相应的物理量,在我们的情况下,复杂价值的折射率值。我们将DEPAF作为第一种基于NF的IDT方法,可以从仅强度和有限角度的测量值中学习RI体积的高质量连续表示。 DECAF中的表示形式是通过使用IDT向前模型直接从测试样品的测量值中学到的,而无需任何地面真相图。我们对模拟和实验生物学样品进行定性和定量评估DECAF。我们的结果表明,DECAF可以生成高对比度和无伪影RI图,并导致MSE超过现有方法的2.1倍。
translated by 谷歌翻译
斑点波动严重限制了合成孔径雷达(SAR)图像的可解释性。因此,散斑减少是跨越至少四十年的众多作品的主题。基于深度神经网络的技术最近在SAR图像恢复质量方面实现了一种新的性能。超出了合适的网络架构的设计或选择足够的损失功能,培训集的构建是最重要的。到目前为止,大多数方法都考虑了监督培训策略:培训网络以产生尽可能靠近斑点的参考图像的输出。无斑点图像通常不可用,这需要采用自然或光学图像或在长时间序列中选择稳定区域,以规避缺乏地面真理。另一方面,自我监督避免使用无斑点图像。我们介绍了一个自我监督的战略,基于单眼复杂的SAR图像的真实和虚构部分的分离,称为Merlin(复杂的自我监督的机除),并表明它提供了一种培训各种深度掠夺的直接途径网络。由于特定于给定传感器和成像模式的SAR传输功能,使用Merlin培训的网络考虑了空间相关性。通过只需要一个图像,并且可能利用大型档案,Merlin将门打开了无忧无虑的机器,以及对机器网络的大规模培训。培训型号的代码是在https://gitlab.telecom-paris.fr/ring/mollin的。
translated by 谷歌翻译
缺乏大规模嘈杂的图像对限制了监督的去噪方法在实际应用中部署。虽然现有无监督的方法能够在没有地面真理清洁图像的情况下学习图像去噪,但它们要么在不切实际的设置下表现出差或工作不佳(例如,配对嘈杂的图像)。在本文中,我们提出了一种实用的无监督图像去噪方法,以实现最先进的去噪性能。我们的方法只需要单一嘈杂的图像和噪声模型,可以在实际的原始图像去噪中轻松访问。它迭代地执行两个步骤:(1)构造具有来自噪声模型的随机噪声的噪声噪声数据集; (2)在噪声 - 嘈杂数据集上培训模型,并使用经过培训的模型来优化嘈杂的图像以获得下一轮中使用的目标。我们进一步近似我们的全迭代方法,具有快速算法,以实现更高效的培训,同时保持其原始高性能。实验对现实世界,合成和相关噪声的实验表明,我们提出的无监督的去噪方法具有卓越的现有无监督方法和具有监督方法的竞争性能。此外,我们认为现有的去噪数据集质量低,只包含少数场景。为了评估现实世界应用中的原始图像去噪表现,我们建立了一个高质量的原始图像数据集Sensenoise-500,包含500个现实生活场景。数据集可以作为更好地评估原始图像去噪的强基准。代码和数据集将在https://github.com/zhangyi-3/idr发布
translated by 谷歌翻译
数字乳房X光检查仍然是乳腺癌筛选最常见的成像工具。虽然使用数字乳房X线照相术用于癌症筛查的益处超过了与X射线曝光相关的风险,但是辐射剂量必须尽可能低,同时保持所产生的图像的诊断效用,从而最大限度地减少患者风险。许多研究通过使用深神经网络恢复低剂量图像来调查剂量降低的可行性。在这些情况下,选择适当的培训数据库和丢失功能至关重要,并影响结果的质量。在这项工作中,提出了一种修改了具有分层跳过连接的Reset架构,以恢复低剂量数字乳房X光检查。我们将恢复的图像与标准的全剂量图像进行比较。此外,我们评估了此任务的几个损失函数的性能。出于培训目的,我们从回顾性临床乳腺X线摄影考试的400次图像数据集中提取了256,000个图像贴片,其中模拟了不同的剂量水平以产生低和标准剂量对。为了在真实情况下验证网络,使用物理拟人乳房乳房映射来在商业上可获得的乳房X线摄影系统中获得真实的低剂量和标准全剂量图像,然后通过我们培训的模型处理。以前呈现的低剂量数字乳房X线摄影的分析恢复模型用作这项工作中的基准。通过信噪比(SNR)进行客观评估,并且平均归一化平方误差(MNSE),分解成残余噪声和偏置。结果表明,感知损失功能(PL4)能够实现全剂量采集的几乎相同的噪声水平,同时导致与其他损耗功能相比较小的信号偏差。
translated by 谷歌翻译