学习自我监督的视频表示主要集中在简单数据增强方案中产生的判别实例。然而,学习的表示通常无法通过看不见的相机观点来概括。为此,我们提出了ViewClr,它将自我监督的视频表示不变到相机视点变化。我们介绍了一个视图生成器,可以被视为任何自我监督的预先文本任务的学习增强,以生成视频的潜在视点表示。ViewClr最大化潜像观点表示与原始视点表示的相似性,使学习的视频编码器能够概括未见的相机视点。在跨视图基准数据集的实验,包括NTU RGB + D数据集,显示ViewClr代表了一种最先进的ViewPoint不变自我监控方法。
translated by 谷歌翻译
视频的对比表示高度依赖于数百万未老化视频的可用性。这对于网络上可用的视频来说是实用的,但获取真实应用的大规模视频非常昂贵和费力。因此,在本文中,我们专注于为自我监督学习设计视频增强,首先分析最佳策略来混合视频以创建新的增强视频样本。然后,问题仍然存在,我们可以利用数据混合视频中的其他方式吗?为此,我们提出了跨模块歧管Cutmix(CMMC),其将视频TESSERACT插入到两个不同模式中的特征空间中的另一个视频TESERACT中。我们发现我们的视频混合策略STC-MIX,即视频的初步混合,然后在视频中跨越不同方式的CMMC,提高了学习视频表示的质量。我们对两个下游任务进行了彻底的实验:在两个小型视频数据集UCF101和HMDB51上进行动作识别和视频检索。我们还展示了我们STC-Mix在NTU数据集上的有效性,其中域名知识有限。我们表明,我们对下游任务的STC混合的表现与其他自我监督的方法有关,同时需要较少的培训数据。
translated by 谷歌翻译
The objective of this paper is visual-only self-supervised video representation learning. We make the following contributions: (i) we investigate the benefit of adding semantic-class positives to instance-based Info Noise Contrastive Estimation (In-foNCE) training, showing that this form of supervised contrastive learning leads to a clear improvement in performance; (ii) we propose a novel self-supervised co-training scheme to improve the popular infoNCE loss, exploiting the complementary information from different views, RGB streams and optical flow, of the same data source by using one view to obtain positive class samples for the other; (iii) we thoroughly evaluate the quality of the learnt representation on two different downstream tasks: action recognition and video retrieval. In both cases, the proposed approach demonstrates state-of-the-art or comparable performance with other self-supervised approaches, whilst being significantly more efficient to train, i.e. requiring far less training data to achieve similar performance.
translated by 谷歌翻译
当前的骨架动作表示方法学习的方法通常集中在受约束的场景上,其中在实验室环境中记录了视频和骨骼数据。在处理现实世界视频中估计的骨骼数据时,由于受试者和摄像机观点之间的差异很大,因此此类方法的性能差。为了解决这个问题,我们通过一种新颖的视图自动编码器介绍了自我监视的骨架动作表示学习。通过Leverage在不同的人类表演者之间进行运动重新定位作为借口任务,以便在2D或3D骨架序列的视觉表示之上删除潜在的动作特异性“运动”特征。这种“运动”功能对于骨架几何和相机视图是不变的,并允许通过辅助,跨视图和跨视图动作分类任务。我们进行了一项研究,重点是针对基于骨架的动作识别的转移学习,并在现实世界数据(例如Posetics)上进行自我监督的预训练。我们的结果表明,从VIA中学到的骨架表示足以提高最新动作分类精度,不仅在3D实验室数据集(例如NTU-RGB+D 60和NTU-RGB+D 120)上,而且还在在仅准确估计2D数据的现实数据集中,例如Toyota Smarthome,UAV-Human和Penn Action。
translated by 谷歌翻译
我们介绍了一种对比视频表示方法,它使用课程学习在对比度培训中施加动态抽样策略。更具体地说,Concur以易于正面样本(在时间上和语义上相似的剪辑上)开始对比度训练,并且随着训练的进行,它会有效地提高时间跨度,从而有效地采样了硬质阳性(时间为时间和语义上不同)。为了学习更好的上下文感知表示形式,我们还提出了一个辅助任务,以预测积极剪辑之间的时间距离。我们对两个流行的动作识别数据集进行了广泛的实验,即UCF101和HMDB51,我们提出的方法在两项视频动作识别和视频检索的基准任务上实现了最新的性能。我们通过使用R(2+1)D和C3D编码器以及对Kinetics-400和Kinetics-200200数据集的R(2+1)D和C3D编码器以及预训练的影响来探讨编码器骨架和预训练策略的影响。此外,一项详细的消融研究显示了我们提出的方法的每个组成部分的有效性。
translated by 谷歌翻译
人类在理解视觉皮层引起的观点变化方面非常灵活,从而支持3D结构的感知。相反,大多数从2D图像池学习视觉表示的计算机视觉模型通常无法概括新颖的相机观点。最近,视觉体系结构已转向无卷积的架构,视觉变压器,该构造在从图像贴片中得出的令牌上运行。但是,这些变压器和2D卷积网络都没有执行明确的操作来学习视图 - 不合稳定表示以进行视觉理解。为此,我们提出了一个3D令牌表示层(3DTRL),该层估计了视觉令牌的3D位置信息,并利用它来学习视图点 - 不可能的表示。 3DTRL的关键元素包括伪深度估计器和学习的相机矩阵,以对令牌施加几何变换。这些使3DTRL能够从2D贴片中恢复令牌的3D位置信息。实际上,3DTRL很容易插入变压器。我们的实验证明了3DTRL在许多视觉任务中的有效性,包括图像分类,多视频视频对准和动作识别。带有3DTRL的模型在所有任务中都超过了骨干变压器,并以最小的添加计算。我们的项目页面位于https://www3.cs.stonybrook.edu/~jishang/3dtrl/3dtrl.html
translated by 谷歌翻译
基于骨架的动作识别广泛用于各种区域,例如监视和人机相互作用。现有模型主要以监督方式学习,从而根据标签昂贵时可能是不可行的大规模标记数据。在本文中,我们提出了一种新的对比度重建表示学习网络(CRRL),其同时为无监督的基于骨架的动作识别捕获姿势和运动动力学。它主要由三部分组成:序列重建器,对比运动学习者和信息定影器。序列重建者通过重建学习从骨架坐标序列的表示,因此学习的表示倾向于聚焦在琐碎的姿势坐标上并且在运动学习中犹豫不决。为了增强运动的学习,对比运动学习者分别在从坐标序列和附加速度序列中学到的表示之间进行对比学习。最后,在信息定位器中,我们探讨了将序列重建器和对比运动学习者结合的各种策略,并建议通过基于知识蒸馏的融合策略同时捕获姿势和动作,从而将动作学习从对比运动学习者转移到序列中的序列重建者。在若干基准测试中,即NTU RGB + D 60,NTU RGB + D 120,CMU Mocap和NW-UCLA的实验结果证明了所提出的CRRL方法​​的承诺,到目前为止的现有方法。
translated by 谷歌翻译
尽管完全监督的人类骨架序列建模成功,但使用自我监督的预训练进行骨架序列表示学习一直是一个活跃的领域,因为很难在大规模上获取特定于任务的骨骼注释。最近的研究重点是使用对比学习学习视频级别的时间和歧视性信息,但忽略了人类骨骼的层次空间时间。与视频级别的这种表面监督不同,我们提出了一种自我监督的分层预训练方案,该方案纳入了基于层次变压器的骨骼骨骼序列编码器(HI-TRS),以明确捕获空间,短期和长期和长期框架,剪辑和视频级别的时间依赖性分别。为了通过HI-TR评估提出的自我监督预训练方案,我们进行了广泛的实验,涵盖了三个基于骨架的下游任务,包括动作识别,动作检测和运动预测。根据监督和半监督评估协议,我们的方法实现了最新的性能。此外,我们证明了我们的模型在训练阶段中学到的先验知识具有强大的下游任务的转移能力。
translated by 谷歌翻译
基于对比度学习的基于自我监督的骨架识别引起了很多关注。最近的文献表明,数据增强和大量对比度对对于学习此类表示至关重要。在本文中,我们发现,基于正常增强的直接扩展对对比对的表现有限,因为随着培训的进展,对比度对从正常数据增强到损失的贡献越小。因此,我们深入研究了对比对比对的,以进行对比学习。由混合增强策略的成功激励,通过综合新样本来改善许多任务的执行,我们提出了Skelemixclr:一种与时空的学习框架,具有时空骨架混合增强(Skelemix),以补充当前的对比样品,以补充当前的对比样品。首先,Skelemix利用骨架数据的拓扑信息将两个骨骼序列混合在一起,通过将裁切的骨骼片段(修剪视图)与其余的骨架序列(截断视图)随机梳理。其次,应用时空掩码池在特征级别上分开这两个视图。第三,我们将对比度对与这两种观点扩展。 SkelemixClr利用修剪和截断的视图来提供丰富的硬对比度对,因为它们由于图形卷积操作而涉及彼此的某些上下文信息,这使模型可以学习更好的运动表示以进行动作识别。在NTU-RGB+D,NTU120-RGB+D和PKU-MMD数据集上进行了广泛的实验表明,SkelemixClr实现了最先进的性能。代码可在https://github.com/czhaneva/skelemixclr上找到。
translated by 谷歌翻译
基于骨架的人类动作识别最近引起了人们对外观变化的敏感性和更多骨架数据的可访问性的敏感性。但是,即使在实践中捕获的3D骨骼也对观点和方向仍然敏感,并给出了不同人体关节的阻塞和人类关节定位中的误差。骨骼数据的这种视图差异可能会严重影响动作识别的性能。为了解决这个问题,我们在本文中提出了一种新的视图不变的表示方法,而没有任何手动动作标签,用于基于骨架的人类行动识别。具体而言,我们通过最大化从不同观点提取的表示形式之间的相互信息来利用同一个人同时对同一个人进行的多视图骨架数据,然后提出一个全局 - 局部对比度损失,以模拟多规模CO - 空间和时间域中的发生关系。广泛的实验结果表明,所提出的方法对输入骨骼数据的视图差异是可靠的,并显着提高了基于无监督骨架的人类动作方法的性能,从而在两个具有挑战性的多视图上产生了新的最新精确度Pkummd和NTU RGB+d的基准。
translated by 谷歌翻译
在3D动作识别中,存在骨骼模式之间的丰富互补信息。然而,如何建模和利用这些信息仍然是一个充满挑战的3D动作表示学习的问题。在这项工作中,我们将交叉模式相互作用作为双向知识蒸馏问题。不同于经典的蒸馏解决方案,这些解决方案将固定和预训练的教师的知识转移到学生中,在这项工作中,知识在模式之间不断更新和双向蒸馏。为此,我们提出了一个新的跨模式相互蒸馏(CMD)框架,并采用以下设计。一方面,引入了相邻的相似性分布来对每种模式中学习的知识进行建模,其中关系信息自然适合对比框架。另一方面,不对称的配置用于教师和学生来稳定蒸馏过程并在模式之间传递高信心信息。通过派生,我们发现以前作品中的跨模式阳性采矿可以被视为我们CMD的退化版本。我们对NTU RGB+D 60,NTU RGB+D 120和PKU-MMD II数据集执行了广泛的实验。我们的方法的表现优于现有的自我监督方法,并设置了一系列新记录。该代码可在以下网址找到:https://github.com/maoyunyao/cmd
translated by 谷歌翻译
自我监督的方法已通过端到端监督学习的图像分类显着缩小了差距。但是,在人类动作视频的情况下,外观和运动都是变化的重要因素,因此该差距仍然很大。这样做的关键原因之一是,采样对类似的视频剪辑,这是许多自我监督的对比学习方法所需的步骤,目前是保守的,以避免误报。一个典型的假设是,类似剪辑仅在单个视频中暂时关闭,从而导致运动相似性的示例不足。为了减轻这种情况,我们提出了SLIC,这是一种基于聚类的自我监督的对比度学习方法,用于人类动作视频。我们的关键贡献是,我们通过使用迭代聚类来分组类似的视频实例来改善传统的视频内积极采样。这使我们的方法能够利用集群分配中的伪标签来取样更艰难的阳性和负面因素。在UCF101上,SLIC的表现优于最先进的视频检索基线 +15.4%,而直接转移到HMDB51时,SLIC检索基线的率高为15.4%, +5.7%。通过用于动作分类的端到端登录,SLIC在UCF101上获得了83.2%的TOP-1准确性(+0.8%),而HMDB51(+1.6%)上的fric fineTuns in top-1 finetuning。在动力学预处理后,SLIC还与最先进的行动分类竞争。
translated by 谷歌翻译
现代自我监督的学习算法通常强制执行跨视图实例的表示的持久性。虽然非常有效地学习整体图像和视频表示,但这种方法成为在视频中学习时空时间细粒度的特征的子最优,其中场景和情况通过空间和时间演变。在本文中,我们介绍了上下文化的时空对比学习(Const-CL)框架,以利用自我监督有效学习时空时间细粒度的表示。我们首先设计一种基于区域的自我监督的借口任务,该任务要求模型从一个视图中学习将实例表示转换为上下文特征的另一个视图。此外,我们介绍了一个简单的网络设计,有效地调和了整体和本地表示的同时学习过程。我们评估我们对各种下游任务和CONST-CL的学习表现,实现了四个数据集的最先进结果。对于时空行动本地化,Const-CL可以使用AVA-Kinetics验证集的检测到框实现39.4%的地图和30.5%地图。对于对象跟踪,Const-CL在OTB2015上实现了78.1%的精度和55.2%的成功分数。此外,Const-CL分别在视频动作识别数据集,UCF101和HMDB51上实现了94.8%和71.9%的前1个微调精度。我们计划向公众发布我们的代码和模型。
translated by 谷歌翻译
运动,作为视频中最明显的现象,涉及随时间的变化,对视频表示学习的发展是独一无二的。在本文中,我们提出了问题:特别是对自我监督视频表示学习的运动有多重要。为此,我们撰写了一个二重奏,用于利用对比学习政权的数据增强和特征学习的动作。具体而言,我们介绍了一种以前的对比学习(MCL)方法,其将这种二重奏视为基础。一方面,MCL大写视频中的每个帧的光流量,以在时间上和空间地样本地样本(即,横跨时间的相关帧斑块的序列)作为数据增强。另一方面,MCL进一步将卷积层的梯度图对准来自空间,时间和时空视角的光流程图,以便在特征学习中地进行地面运动信息。在R(2 + 1)D骨架上进行的广泛实验证明了我们MCL的有效性。在UCF101上,在MCL学习的表示上培训的线性分类器实现了81.91%的前1个精度,表现优于6.78%的训练预测。在动力学-400上,MCL在线方案下实现66.62%的前1个精度。代码可在https://github.com/yihengzhang-cv/mcl-motion-focused-contrastive-learning。
translated by 谷歌翻译
Previous work on action representation learning focused on global representations for short video clips. In contrast, many practical applications, such as video alignment, strongly demand learning the intensive representation of long videos. In this paper, we introduce a new framework of contrastive action representation learning (CARL) to learn frame-wise action representation in a self-supervised or weakly-supervised manner, especially for long videos. Specifically, we introduce a simple but effective video encoder that considers both spatial and temporal context by combining convolution and transformer. Inspired by the recent massive progress in self-supervised learning, we propose a new sequence contrast loss (SCL) applied to two related views obtained by expanding a series of spatio-temporal data in two versions. One is the self-supervised version that optimizes embedding space by minimizing KL-divergence between sequence similarity of two augmented views and prior Gaussian distribution of timestamp distance. The other is the weakly-supervised version that builds more sample pairs among videos using video-level labels by dynamic time wrapping (DTW). Experiments on FineGym, PennAction, and Pouring datasets show that our method outperforms previous state-of-the-art by a large margin for downstream fine-grained action classification and even faster inference. Surprisingly, although without training on paired videos like in previous works, our self-supervised version also shows outstanding performance in video alignment and fine-grained frame retrieval tasks.
translated by 谷歌翻译
通过自学学习的视觉表示是一项极具挑战性的任务,因为网络需要在没有监督提供的主动指导的情况下筛选出相关模式。这是通过大量数据增强,大规模数据集和过量量的计算来实现的。视频自我监督学习(SSL)面临着额外的挑战:视频数据集通常不如图像数据集那么大,计算是一个数量级,并且优化器所必须通过的伪造模式数量乘以几倍。因此,直接从视频数据中学习自我监督的表示可能会导致次优性能。为了解决这个问题,我们建议在视频表示学习框架中利用一个以自我或语言监督为基础的强大模型,并在不依赖视频标记的数据的情况下学习强大的空间和时间信息。为此,我们修改了典型的基于视频的SSL设计和目标,以鼓励视频编码器\ textit {subsume}基于图像模型的语义内容,该模型在通用域上训练。所提出的算法被证明可以更有效地学习(即在较小的时期和较小的批次中),并在单模式SSL方法中对标准下游任务进行了新的最新性能。
translated by 谷歌翻译
时空表示学习对于视频自我监督的表示至关重要。最近的方法主要使用对比学习和借口任务。然而,这些方法通过在潜在空间中的特征相似性判断所学习表示的中间状态的同时通过潜伏空间中的特征相似性来学习表示,这限制了整体性能。在这项工作中,考虑到采样实例的相似性作为中级状态,我们提出了一种新的借口任务 - 时空 - 时间重叠速率(Stor)预测。它源于观察到,人类能够区分空间和时间在视频中的重叠率。此任务鼓励模型区分两个生成的样本的存储来学习表示。此外,我们采用了联合优化,将借口任务与对比学习相结合,以进一步增强时空表示学习。我们还研究了所提出的计划中每个组分的相互影响。广泛的实验表明,我们的拟议Stor任务可以赞成对比学习和借口任务。联合优化方案可以显着提高视频理解中的时空表示。代码可在https://github.com/katou2/cstp上获得。
translated by 谷歌翻译
最近基于对比的3D动作表示学习取得了长足的进步。但是,严格的正/负约束尚未放松,并且使用非自我阳性的使用尚待探索。在本文中,为无监督的骨骼3D动作表示学习提出了对比度阳性挖掘(CPM)框架。 CPM在上下文队列中识别非自我阳性以提高学习。具体而言,采用和培训了暹罗编码器,以匹配增强实例的相似性分布,以参考上下文队列中的所有实例。通过确定队列中的非自我积极实例,提出了一种积极增强的学习策略,以利用采矿阳性的知识来增强学习潜在空间的稳健性,以抵抗阶级内部和阶层间多样性。实验结果表明,所提出的CPM具有有效性,并且在挑战性的NTU和PKU-MMD数据集上胜过现有的最新无监督方法。
translated by 谷歌翻译
对比学习在视频表示学习中表现出了巨大的潜力。但是,现有方法无法充分利用短期运动动态,这对于各种下游视频理解任务至关重要。在本文中,我们提出了运动敏感的对比度学习(MSCL),该学习将光学流捕获的运动信息注入RGB帧中,以增强功能学习。为了实现这一目标,除了剪辑级全球对比度学习外,我们还开发了局部运动对比度学习(LMCL),具有两种模式的框架级对比目标。此外,我们引入流动旋转增强(FRA),以生成额外的运动除件负面样品和运动差分采样(MDS)以准确筛选训练样品。对标准基准测试的广泛实验验证了该方法的有效性。以常用的3D RESNET-18为骨干,我们在UCF101上获得了91.5 \%的前1个精度,而在视频分类中进行了一些v2的v2,以及65.6 \%的top-1 top-1召回ucf1011对于视频检索,特别是改善了最新的。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译